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Water Reuse a Means to Secure Potable Water Supply
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Why Membrane Distillation?

0

100

200

300

400

500

600

700

800

900

1000

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 Sp
ec

ifi
c 

Th
er

m
al

 E
ne

rg
y 

Co
ns

um
pt

io
n,

 k
W

h/
m

3

Sp
ec

ifi
c 

El
ec

tr
ic

al
 E

ne
rg

y 
Co

ns
um

pt
io

n,
 k

W
h/

m
3

Salinity, g/L

SEEC - MD
SEEC - RO
STEC - MD

• Lower Specific Electrical Energy compared to RO 
at high concentrations

• Viable when low-grade heat or renewable energy is 
available

• Higher energy efficiency (GOR) and lower energy 
consumption

A. Deshmukh, C. Boo, V. Karanikola,…..,M. Elimelech, Energy & Environ. Sci., 2018, 11, 1177.

MD vs. ROMD vs. Distillation

M. Elimelech & W.A. Phillip, Science, 2011, 333, 712.
A. Achilli, BOR Report, 2019.



Concentrate
Management

• High TDS: 3-35g/L

• Rich in Organic Matter:  >20 mg/L[1] 

• High disposal cost: ~33% of 
desalination[2]

• Environmental effects: salinity, 
organics, chemicals and temperature

Water Reuse RO Concentrate 

[1]Orange County Water District brine concentrate analyses (Ersever, 2013)
[2] Mickley M., Report 155: Treatment of Concentrate. U.S. Department of the Interior.
Bureau of Reclamation, 2008.



Conventional Concentrate Management Systems

RO 80% RECOVERY

Brine 
concentration + 
Crystallization

Discharge to Water 
Body

Discharge to Sewer 
System

Evaporation pond Deep Injection Well

Concentrated Brine



• Lower Specific Electrical Energy 
compared to RO at high 
concentrations

• Viable when low-grade heat or 
renewable energy is available

• Maximizes water recovery

RO + Ozone MD = 94% water 
recovery

Ozone-Membrane Distillation (MD) 
Condensing stream            

(RO Concentrate, 1 MGD)

Hydrophobic 
membrane

Cool Distillate 
(0.7 MGD)

HX

Brine
(0.3 MGD)

Air 
gap



• Develop a comparative techno-economic
assessment of conventional brine management and
the proposed Ozone-MD system.

• Determine key performance variables that
influence system capital and operation and
management cost, energy requirements, and
environmental impacts.

• Identify improvement opportunities, evaluate
economy of scales, and assess the feasibility for
implementing the novel brine management
technology.

Project Goals



Boundaries and General Variables
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Deep 
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Brine 
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Distillate

RO Concentrate

• Infrastructure
• Operation and 

Management
• Energy 

requirements

BrineSlurry



Methods

Design Systems

Develop Phyton 
Based Cost Model

Identify cost 
factors

Sensitivity 
Analysis

Assessment



Pilot-scale UF-RO system at WEST Center, 
University of Arizona

Properties

Conductivity 
(mS/cm) 4.2

TDS (mg/L) 2400

Total organic 
carbon (mg/L) 23

Recovery 80%

Concentrate Management Systems Modeled After Experimental Conditions

Using real RO concentrate from a pilot 
scale RO system with the following 
properties:



Baseline Design Criteria for Concentrate Management Systems
System Variable Value Unit

Concentrate Volume 3,785 (1) m3 (MGD)
Concentrate Salinity 3 to 35 g/L
Plant Lifetime 20 Years
Availability 95 %
Recovery 70 %
Concentrate pumping distance* 1.6 to 32 (1-20) km (miles)

Evaporation Ponds
Liner Thickness 60 to 100 (2.4 to 3.9) mm (inches)
Pond depth 1.2 to 3.7 (4 to 12) m (ft)

Deep Injection Well
Well depth 762-3048  (2,500 to 930) m (ft)
Injection velocity 2.4 to 3 (8 to 10) m/s (ft/s)

Brine Concentrator Recovery 70 to 99 %

Ozone-MD

Temperature gradient hot side (MD) 50 to 80 (122 to 176) °C (°F)
Temperature gradient cold side (MD) 30 to 40 (86 to 104) °C (°F)
Concentrate feed flow rate to MD 0.5 to 1.5 (2.2 to 6.6) m3/hr (gpm)
Membrane cost 60**-280 USD/7.2 m2

*Deep Well Injection and Evaporation Ponds  **Mass production



Financial Assumptions
Interest Rate  % 10
Inflation Rate % 3
Amortization Factor % 12
Land Cost $/m2 [3] 1.4
Electricity $/kWh[4] 0.07
Natural gas $/m3 [5] 0.14
Liner Cost $/m2 3-15
Regenerated water $/m3[6] 0.67
Indirect Cost % 10
Land clearing $/Acre 1000-4000

Financial Assumptions for Cost Model

• Levelized cost of disposal
(LCCD) will be compared
between systems.

• LCCD: net present cost of
1m3 of concentrate disposed
of by the system over its
lifetime

[2] Goodrich A, James T, Woodhouse M. Residential, commercial, and utility-scale photovoltaic system prices in the U.S: current drivers and cost-reduction opportunities.; 2012.
[3] USA Energy Information Administration. Average Price of Electricity to Ultimate Customers by End-Use Sector. 2021.
[4] USA Energy Information Administration. Natural Gas Prices. 2021.
[5] Graham J, Adam Z, Winnie S, Parameshwaran R, Michael N. Evaluation and Selection of Available Processes for a Zero-Liquid Discharge System for the Perris, California, Ground Water Basin.
Report 149. Bureau of reclamation. 2008.



Results



Evaporation Rate Effect on Disposal Costs
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• Higher evaporation rate 
and lower rainfall 
provide better 
conditions for 
evaporation ponds, 
lowering disposal cost.

• Lower evaporation rates 
require larger 
evaporative areas



Effect of Pumping Distance on Deep Injection Well Disposal Costs

0

500

1000

1500

2000

2500

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

0 2 4 6 8 10 12 14 16 18 20 22

Sh
af

t P
ow

er
 r

eq
ui

re
d 

(k
W

)

L
C

C
D

 ($
/m

3 )

Concentrate pumping distance (Miles) 

2,500 ft 5,000 ft 7,500 ft 10,000 ft Shaft Power

• Increase in pumping 
distances results in 
higher energy 
requirements



Brine Concentrator + Crystallizer Thermal Source Effect on LCCD
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• Using methane as the 
thermal source for the 
brine concentrator 
reduces costs significantly 
and allows to use smaller 
systems at full capacity 
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Ozone-MD Thermal Source Effect on LCCD
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Increase in flux increases energy requirements, making thermal source the key cost component for O&M
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LCCD is lowest for 
evaporation ponds due to 
low O&M requirements.

Conversely high energy 
requirements and 
equipment cost for 
evaporative 
crystallization make 
this option the highest 
LCCD.



System Cost of disposal 
($/m3)

Resource 
recovery

Energy 
consumption Modularity

Ozone-MD

Evaporation 
Pond

Deep Injection 
Well

Brine 
concentrator + 
Crystallizer

General Observations



Ozone-MD  is placed second when considering methane as a thermal 
source. The levelized costs of disposal are competitive to those of 
conventional concentrate management systems

Ozone-MD is a viable option when value is placed on resource 
recovery. Which is of vital importance for water-stressed regions.

There is no one size fits all solution when selecting concentrate 
management systems. Best scenario conditions are site dependent.

Conclusion
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Questions?
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• Evaporation pond LCCD is the lowest at $0.52/m3, however this system is highly
limited by region-specific conditions

• LCCD for DIW, rapidly increases with pumping distance. If the pumping distance
is more than 30 km, the best-case scenario costs double.

• The best-case scenario for Ozone-MD using methane as a heat source places the
system LCCD second to the evaporation ponds. When considering the market
price of recovered water, ozone-MD costs are competitive to those of evaporation
ponds.

General Observations



Ozone-MD system Model

Feed Flow Rate 500-1500 L/hr

Salinity 3-35 g/L
Tf,m 50-80 °C
Td,m 30-40 °C

Input variables 
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Membrane Distillation Flux Model for TConc In=30 C

Feed Flow rate 500 L/hr Feed Flow rate 1000 L/hr
Feed Flow rate 1500 L/hr

Jw = flux
(Pf,m)= Water vapor pressure on feed side
(Pd,m)= Water vapor pressure on DI side
R= mass transfer resistance 
(Tf,m and Td,m)= Temperature at membrane surface
(Sf,m and Sd,m)= Salinity at the membrane surface 



Ozone-MD liner thickness sensitivity effect on cost
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Ozone-MD

LCCD is $0.73/m3

Membrane modules 
make up 21-35% of the 
capital cost.

Thermal Source: Methane Thermal Source: Electricity
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Evaporation Pond

Levelized cost of 
concentrate disposed 
(LCCD) is $0.52/m3

Biggest contribution is 
liner at 39 to 50% of 
capital costs

Land type: Brush Land type: Woods



LCCD is 1.07$/m3

Biggest effect on cost is 
for installed casing 
which contributes up to 
22% of capital cost.

Deep Injection Well DIW

Pumping Distance
1.6 km

Pumping Distance
16 km
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Effect of pumping distance on DIW LCCD
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Brine Concentrator + Crystallizer

LCCD is $3.35/m3

Evaporator and
installation costs
are 56-74% of
capital cost

Working at 70% Capacity Working at 99% Capacity
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