This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

THE UNIVERSITY **OF ARIZONA**

Water & Energy Sustainable **Technology** Center

COLLEGE OF ENGINEERING **Chemical & Environmental** Engineering

Comparative Techno-Economic and Environmental Assessment of Ozone-Membrane **Distillation for Brine Concentrate Management**

Varinia Felix^{1,2}, Mukta Hardikar^{1,2}, Andrea Achilli^{1,2} and Kerri L. Hickenbottom^{1,2}

¹Department of Chemical and Environmental Engineering, University of Arizona ²Water and Energy Sustainable Technology (WEST) Center, University of Arizona

Water Reuse a Means to Secure Potable Water Supply

USA Population Census.Gov

Water Yield 1985–2010 Bm³

Lake Mead, Colorado, 2015. (Jae C. Hong / AP Photo)

A.

Wildfire in Tucson Arizona 2020 Danielle & Ryan McCrory Photography

Conventional Treatment Train for Potable Reuse (DPR)

Direct Potable Reuse

Why Membrane Distillation?

- Higher energy efficiency (GOR) and lower energy consumption
- A. Deshmukh, C. Boo, V. Karanikola,....,M. Elimelech, Energy & Environ. Sci., 2018, 11, 1177.

- Lower Specific Electrical Energy compared to RO at high concentrations
- Viable when low-grade heat or renewable energy is available

M. Elimelech & W.A. Phillip, Science, 2011, 333, 712. A. Achilli, BOR Report, 2019.

Water Reuse RO Concentrate

Concentrate Management

- High TDS: 3-35g/L
- Rich in Organic Matter: >20 mg/L^[1]
- High disposal cost: ~33% of desalination^[2]
- Environmental effects: salinity, organics, chemicals and temperature

Conventional Concentrate Management Systems

Ozone-Membrane Distillation (MD)

- Lower Specific Electrical Energy compared to RO at high concentrations
- Viable when low-grade heat or renewable energy is available
- Maximizes water recovery

RO + Ozone MD = 94% water recovery

Project Goals

- **Develop** a comparative techno-economic assessment of conventional brine management and the proposed Ozone-MD system.
- Determine key **performance variables** that influence system capital and operation and management cost, energy requirements, and environmental impacts.
- Identify improvement opportunities, evaluate economy of scales, and assess the feasibility for implementing the novel brine management technology.

Boundaries and General Variables

- Infrastructure
- Operation and Management
- Energy requirements

Methods

Concentrate Management Systems Modeled After Experimental Conditions

Pilot-scale UF-RO system at WEST Center, University of Arizona Using real RO concentrate from a pilot scale RO system with the following properties:

Properties		
Conductivity (mS/cm)	4.2	
TDS (mg/L)	2400	
Total organic carbon (mg/L)	23	
Recovery	80%	

Baseline Design Criteria for Concentrate Management Systems

System	Variable	Value	Unit
	Concentrate Volume	3,785 (1)	m ³ (MGD)
	Concentrate Salinity	3 to 35	g/L
	Plant Lifetime	20	Years
	Availability	95	%
	Recovery	70	%
	Concentrate pumping distance*	1.6 to 32 (1-20)	km (miles)
Even anotion Danda	Liner Thickness	60 to 100 (2.4 to 3.9)	mm (inches)
Evaporation Ponds	Pond depth	1.2 to 3.7 (4 to 12)	m (ft)
Deep Injection Well	Well depth	762-3048 (2,500 to 930)	m (ft)
	Injection velocity	2.4 to 3 (8 to 10)	m/s (ft/s)
Brine Concentrator	Recovery	70 to 99	%
	Temperature gradient hot side (MD)	50 to 80 (122 to 176)	°C (°F)
Ozone-MD	Temperature gradient cold side (MD)	30 to 40 (86 to 104)	°C (°F)
	Concentrate feed flow rate to MD	0.5 to 1.5 (2.2 to 6.6)	m ³ /hr (gpm)
	Membrane cost	60**-280	$USD/7.2 \text{ m}^2$

*Deep Well Injection and Evaporation Ponds

**Mass production

Financial Assumptions for Cost Model

Financial Assumptions			
Interest Rate %	10		
Inflation Rate %	3		
Amortization Factor %	12		
Land Cost \$/m ^{2 [3]}	1.4		
Electricity \$/kWh ^[4]	0.07		
Natural gas \$/m ^{3 [5]}	0.14		
Liner Cost \$/m ²	3-15		
Regenerated water \$/m ^{3[6]}	0.67		
Indirect Cost %	10		
Land clearing \$/Acre	1000-4000		

- Levelized cost of disposal (LCCD) will be compared between systems.
- LCCD: net present cost of 1m³ of concentrate disposed of by the system over its lifetime

^[2] Goodrich A, James T, Woodhouse M. Residential, commercial, and utility-scale photovoltaic system prices in the U.S: current drivers and cost-reduction opportunities.; 2012.

^[3] USA Energy Information Administration. Average Price of Electricity to Ultimate Customers by End-Use Sector. 2021.

^[4] USA Energy Information Administration. Natural Gas Prices. 2021.

^[5] Graham J, Adam Z, Winnie S, Parameshwaran R, Michael N. Evaluation and Selection of Available Processes for a Zero-Liquid Discharge System for the Perris, California, Ground Water Basin. Report 149. Bureau of reclamation. 2008.

Results

Evaporation Rate Effect on Disposal Costs

- Higher evaporation rate and lower rainfall provide better conditions for evaporation ponds, lowering disposal cost.
- Lower evaporation rates require larger evaporative areas

Effect of Pumping Distance on Deep Injection Well Disposal Costs

• Increase in pumping distances results in higher energy requirements

Brine Concentrator + Crystallizer Thermal Source Effect on LCCD

 Using methane as the thermal source for the brine concentrator reduces costs significantly and allows to use smaller systems at full capacity

Ozone-MD Thermal Source Effect on LCCD

Increase in flux increases energy requirements, making thermal source the key cost component for O&M

Levelized Cost

LCCD is lowest for evaporation ponds due to low O&M requirements.

Conversely high energy requirements and equipment cost for evaporative crystallization make this option the highest LCCD.

General Observations

System	Cost of disposal (\$/m ³)	Resource recovery	Energy consumption	Modularity
Ozone-MD	S S			
Evaporation Pond	S	X		X
Deep Injection Well	SSS S	X		X
Brine concentrator + Crystallizer				

Conclusion

Ozone-MD is placed second when considering methane as a thermal source. The levelized costs of disposal are competitive to those of conventional concentrate management systems

Ozone-MD is a viable option when value is placed on resource recovery. Which is of vital importance for water-stressed regions.

There is no one size fits all solution when selecting concentrate management systems. Best scenario conditions are site dependent.

Acknowledgements

Dr. Kerri Hickenbottom Dr. Andrea Achilli

HER-ART Lab Group Members Bianca Souza Chaves Jeb Shingler Luke Presson Mikah Inkawhich Mohammed Alhussaini Mukta Hardikar Zachary Binger

Southern Nevada Water Authority Universities Council on Water Resources

ART Lab

Additional Slides

General Observations

- Evaporation pond LCCD is the lowest at \$0.52/m³, however this system is highly limited by region-specific conditions
- LCCD for DIW, rapidly increases with pumping distance. If the pumping distance is more than 30 km, the best-case scenario costs double.
- The best-case scenario for Ozone-MD using methane as a heat source places the system LCCD second to the evaporation ponds. When considering the market price of recovered water, ozone-MD costs are competitive to those of evaporation ponds.

Ozone-MD system Model

Input variables

Feed Flow Rate	500-1500	L/hr
Salinity	3-35	g/L
Tf,m	50-80	°C
Td,m	30-40	°C

$$J_{w} = \frac{1}{R} \left(P_{f,m} (T_{f,m}, S_{f,m}) - P_{d,m} (T_{d,m}, S_{d,m}) \right)$$

Jw = flux

(Pf,m)= Water vapor pressure on feed side (Pd,m)= Water vapor pressure on DI side R= mass transfer resistance

(Tf,m and Td,m)= Temperature at membrane surface (Sf,m and Sd,m)= Salinity at the membrane surface Membrane Distillation Flux Model for TConc In=30 C

---Feed Flow rate 1500 L/hr

Ozone-MD liner thickness sensitivity effect on cost

A-

Ozone-MD

Fractional contribution to cost of capital and O&M components for Ozone-MD

LCCD is **\$0.73/m3**

Membrane modules make up 21-35% of the capital cost.

Evaporation Pond

Fractional Contribution to Cost for Capital and O&M costs of Evaporation Pond Systems

Levelized cost of concentrate disposed (LCCD) is **\$0.52/m3**

Biggest contribution is liner at 39 to 50% of capital costs

Deep Injection Well DIW

Capital and O&M costs for DIW

LCCD is 1.07\$/m³

Biggest effect on cost is for installed casing which contributes up to 22% of capital cost.

Effect of pumping distance on DIW LCCD

LCCD of DIW according to pumping distance

Brine Concentrator + Crystallizer

Capital and O&M costs for Brine Concentrator + Crystallizer

LCCD is **\$3.35/m3**

Evaporatorandinstallationcostsare56-74%ofcapital cost