This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Impacts of Real-Time Monitoring on Adaptive Capacity: Lessons from a Communally Managed Irrigation Network in Northern New Mexico, USA

Lily M. Conrad¹, Alexander G. Fernald¹, Marshall A. Taylor², Steven J. Guldan³, and Carlos G. Ochoa⁴

¹Water Resources Research Institute and Water Science and Management Graduate Degree Program, New Mexico State University, Las Cruces, NM, USA

²Department of Sociology, New Mexico State University, Las Cruces, NM, USA

³Sustainable Agriculture Science Center, New Mexico State University, Alcalde, NM, USA

⁴College of Agricultural Sciences – Ecohydrology Lab, Oregon State University, Corvallis, OR, USA

Outline

- Introduction
- Methods
- Results & Discussion
- Conclusions
- Acknowledgements
- Contact Information
- References

Broader context

- Large reliance on winter snowpack to meet water demands throughout the summer in the Western US (Mote et al., 2018)
- Vulnerabilities of snow-dominated basins with warming climate (Barnett et al., 2005; Clow, 2010):
 - Volume of runoff

Broader context

- Rio Grande Basin climate change impacts (Harpold et al., 2012):
 - Increasing winter temperature
 - Decreasing winter precipitation, maximum SWE, snow covered days per decade
- Upper Rio Grande Basin projected climate change impacts (Chavarria & Gutzler, 2018; Llewellyn et al., 2013)
 - Decrease snowpack accumulation
 - Shift to earlier snowmelt runoff

BE BOLD. Shape the Future.

• Later portions of the runoff season left drier

Introduction | Met

Managing drought and climate variability

- Many sectors stressed by variable and changing water resources
 - Irrigation systems
- Acequias
 - Communal irrigation systems
 - 200-400 years old (southwest USA)
 - Gravity-driven water delivery canals for irrigation purposes

Photo courtesy of NMAA

- Local governing organizations in charge of community-managed water allocations (mayordomo, commissioners, parciantes)
- Drought prompts collaborative and dynamic water management approaches (Fernald et al., 2015; Guldan et al., 2013)
- Resilient

Acequia vulnerabilities

• 1,900 \rightarrow 640 active acequias

BE BOLD. Shape the Future.

- Challenges:
 - Warming climate (decreasing surface water availability)
 - Water rights transfers (out of acequia communities)
 - Lack of storage capacity (must use the water when it's available)

Introduction | Methods | Results & Discussion | Conclusions

- Development projects (more housing, less land)
- Community structure (children moving to urban areas for education/employment opportunities)

Acequia vulnerabilities

- 1,927 \rightarrow 640 active acequias
- Challenges:
 - Warming climate
 - Water rights transfers
 - Lack of storage capacity
 - Development projects
 - Community structure

Gap in community knowledge:

Acequia leaders from the Rio Hondo watershed expressed the need for more available and accessible data.

BE BOLD. Shape the Future. Introduction | Methods | Results & Discussion | Conclusions

Gaps in literature

- 1. Importance of **stakeholder engagement**, **community science**, and actionable knowledge
 - Limitations of previous hydrologic research focused on stakeholder engagement (Buytaert et al., 2014; Paul et al., 2018):
 - Nonscientist roles limited to data gathering
 - Mostly water quality

BE BOLD. Shape the Future.

2. Interdisciplinary research spanning hydrology and social sciences lacks clear integration methods (Seidl & Barthel, 2017)

Introduction | Methods | Results & Discussion | Conclusions

3. Growing awareness of the need to proactively address and mitigate climate change impacts resulted in a demand for **adaptive capacity assessments** (Agrawal, 2010; Fernández-Giménez et al., 2015), but current assessment methods are not standardized (Engle, 2011)

Adaptive capacity:

The ability to experiment, learn, and test management strategies in response to change, disturbance, or challenges and is considered a precursor to resilience (Armitage, 2005; Eakin et al., 2011; Engle, 2011; Smit & Wandel, 2006).

Resilience:

A system's ability to withstand disturbance and reorganize efforts while enduring change and retaining its function, structure, and identity over time (Baival & Fernandez-Gimenez, 2012).

Study overview

- Goal: assess the role of improved data accessibility on adaptive capacity
- **Hypothesis:** increasing the accessibility and availability of water information for irrigation water management would increase adaptive capacity within a rural agricultural community in a semiarid valley
- **Process:** community science, telemetry monitoring, pretest-posttest survey design

Methods

- Study area
- Telemetry monitoring system
- Adaptive capacity assessment

Study area

- Rio Hondo watershed
- 185 km²
- Average elevation 2,200 m
- Drains into the Rio Grande
- Semiarid steppe climate
- Main inputs:
 - Snowmelt
 - Monsoons
- Communities
- Land use

BE BOLD. Shape the Future. Introduction | Methods | Results & Discussion | Conclusions

Telemetry monitoring system

- Stakeholder involvement
- Equipment overview
 - Flumes
 - Stilling well
 - Monitoring equipment
 - Telemetry (cell + radios + Wi-Fi)
- Data collection
 - 15 min
 - Stage, discharge, water temp, conductivity
 - Verification
- Data delivery
 - Web interface
 - Campbell Scientific Konect Global Data Services

BE BOLD. Shape the Future. Introduction | Methods | Results & Discussion | Conclusions

Adaptive capacity assessment

Objective: assess the role of improved data accessibility on adaptive capacity

*changes considered significant at α = 0.05

Introduction | Methods | Results & Discussion | Conclusions

Adaptive capacity assessment (cont.)

Results & Discussion

- Acequia monitoring web interface
- Adaptive capacity assessment

La Cuchilla

- Water Level - Electrical Conductivity - Flow

Current flow:

7.6 cfs

Daily Averages					
imestamp (UTC-6 hours)	Lvl_ft_Avg	NMSU_flow_cfs_Avg	Cond_Avg		
8/20/2020 00:00	0.861	7.881	0.232		
8/19/2020 00:00	0.898	8.44	NaN		
8/18/2020 00:00	0.904	8.52	0.235		
8/17/2020 00:00	0.899	8.45	0.229		
8/16/2020 00:00	0.89	8.32	0.229		
8/15/2020 00:00	0.889	8.3	0.23		
8/14/2020 00:00	0.894	8.37	0.23		
8/13/2020 00:00	0.903	8.51	0.231		
8/12/2020 00:00	0.91	8.62	0.23		
8/11/2020 00:00	0.931	8.97	NaN		

Acequia monitoring web interface

An example of the water data displayed for each acequia on the web interface. In this case, La Cuchilla on 20 August 2020.

BE BOLD. Shape the Future. Introduction | Methods | Results & Discussion | Conclusions

Acequia monitoring web interface

A compilation of survey feedback regarding a) the web interface's general level of helpfulness (n = 17), b) most helpful attributes and added benefits of the web interface (n = 13), and c) interest from respondents to continue this or a similar web monitoring tool for future irrigation seasons (n = 23).

oduction | Methods | Results & Discussion | Conclusions

Indicator (score range)	Presurvey mean	Postsurvey mean	t	р	95% CI
Water management (0-48)	14.40	17.04	1.162	0.4650	(0.4552, 0.4748)
Information diversity (0-5)	3.40	4.60	4.157	0.0022*	(0.0014, 0.0033)
Knowledge exchange (0-10)	5.92	5.52	-0.499	0.814	(0.8061, 0.8215)
Cognitive social capital (0-26)	13.95	14.86	0.722	0.0177*	(0.0152, 0.0205)
Structural social capital (0-10)	3.00	3.00	0.000	1.000	(0.9996, 1.0000)
Proactivity (0-5)	3.24	3.44	1.000	0.0004*	(0.0001, 0.0010)
Leadership (0-16)	11.44	13.04	2.157	0.0070*	(0.0055, 0.0088)

Adaptive capacity assessment

Comparison of each adaptive capacity indicator between the presurvey and postsurvey (n = 25). Monte Carlo paired sample t tests assessed the differences and underwent 10,000 permutations. The tstatistic, p value ($\alpha = 0.05$), and 95% confidence interval are reported for each adaptive capacity indicator. Upper-tail p values are reported.

IM TATE **BE BOLD.** Shape the Future.

Introduction | Methods | Results & Discussion | Conclusions

Indicator (score range)	Presurvey mean	Postsurvey mean	t	р	95% CI	Adaptive capacity
Water management	14.40	17.04	1.162	0.4650	(0.4552, 0.4748)	assessment
Information diversity (0-5)	3.40	4.60	4.157	0.0022*	(0.0014, 0.0033)	
Knowledge exchange (0-10)	5.92	5.52	-0.499	0.814	(0.8061, 0.8215)	The number of sources community members can
Cognitive social capital (0-26)	13.95	14.86	0.722	0.0177*	(0.0152, 0.0205)	reference to get information about local water resources
Structural social capital (0-10)	3.00	3.00	0.000	1.000	(0.9996, 1.0000)	
Proactivity (0-5)	3.24	3.44	1.000	0.0004*	(0.0001, 0.0010)	
Leadership (0-16)	11.44	13.04	2.157	0.0070*	(0.0055, 0.0088)	

NM STATE BE BOLD. Shape the Future. Introduction | Methods | Results & Discussion | Conclusions

Indicator (score range)	Presurvey mean	Postsurvey mean	t	р	95% CI	Adaptive capacity
Water management (0-48)	14.40	17.04	1.162	0.4650	(0.4552, 0.4748)	assessment
Information diversity (0-5)	3.40	4.60	4.157	0.0022*	(0.0014, 0.0033)	
Knowledge exchange (0-10)	5.92	5.52	-0.499	0.814	(0.8061, 0.8215)	
Cognitive social capital (0-26)	13.95	14.86	0.722	0.0177*	(0.0152, 0.0205)	An individual's trust and ease with othe community members
Structurar social capital (0-10)	3.00	3.00	0.000	1.000	(0.3330, 1.0000)	
Proactivity (0-5)	3.24	3.44	1.000	0.0004*	(0.0001, 0.0010)	The ability to interact with others abou issues before they worsen
Leadership (0-16)	11.44	13.04	2.157	0.0070*	(0.0055, 0.0088)	Local leadership can mobilize commun
						or occurrence of challenging events

NM STATE BE BOLD. Shape the Future.

Introduction | Methods | Results & Discussion | Conclusions

Recognition of the COVID-19 pandemic

- 68% of survey respondents indicated that they felt the pandemic greatly impacted their irrigation season
 - Individuals could not attend or organize regular water allocation meetings due to social restrictions
 - Many individuals are members of vulnerable populations (elderly, preexisting conditions) and avoided others
- Potential confounding variable? Ultimately helpful for assessment.

BE BOLD. Shape the Future.

- Better to measure adaptive capacity with exposure to adverse circumstances (Engle, 2011, 2013)
- Likely dampened the results of knowledge exchange & structural social capital

Introduction | Methods | Results & Discussion | Conclusions

Other studies

- Telemetry monitoring to meet community need has significant, positive benefits on adaptive capacity
- Findings consistent with other studies:
 - Providing irrigation districts and communities with real-time water data allows stakeholders to make effective water management decisions and changes during times of low flow (Ellison et al., 2019)
 - Real-time urban water use data improves water conservation efforts (Cominola et al., 2021)

Final remarks

- Real-time web-based monitoring of irrigation diversions helps traditional irrigation systems manage water during times of low flow by increasing elements of adaptive capacity
- A community science approach based on stakeholder engagement and co-production of actionable knowledge ensures monitoring system relevancy, encourages use, and facilitates success
- Survey methodology successfully quantified adaptive capacity and incorporated social factors into hydrologic research (and can be modified)

Acknowledgements

- Funding:
 - State of New Mexico special and state appropriations
 - NMWRRI2019 2020 & NMWRRI2021
 - NMSU College of Agriculture, Consumer, and Environmental Sciences
- The community!

Photo courtesy of Sylvia Rodriguez

Contact Information

Lily Conrad

New Mexico State University

Water Science & Management Graduate Degree Program

New Mexico Water Resources Research Institute

https://nmwrri.nmsu.edu/

conradl@nmsu.edu

References

Agrawal, A. (2010). The role of local institutions in adaptation to climate change. In R. Mearns & A. Norton (Eds.), *Social dimensions of climate change: Equity and vulnerability in a warming world* (pp. 173–178). Washington, DC: The World Bank. Retrieved from https://openknowledge.worldbank.org/bitstream/handle/10986/28274/691280WP0P11290utions0in0adaptation.pdf?sequence=1

Armitage, D. 2005. "Adaptive Capacity and Community-Based Natural Resource Management." Environmental Management 35 (6): 703–15. doi:10.1007/s00267-004-0076-z.

Baival, B. and M. E. Fernández-Giménez. 2012. "Meaningful Learning for Resilience-Building among Mongolian Pastoralists." Nomadic Peoples 16 (2): 53–77. doi:10.3167/np.2012.160205.

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. *Nature*, 438(7066), 303–309. <u>https://doi.org/10.1038/nature04141</u>

Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., et al. (2014). Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. *Frontiers in Earth Science*, *2*, 1–21. https://doi.org/10.3389/feart.2014.00026

Chavarria, S. B., & Gutzler, D. S. (2018). Observed changes in climate and streamflow in the Upper Rio Grande basin. *Journal of the American Water Resources Association*, 54(3), 644–659. <u>https://doi.org/10.1111/1752-1688.12640</u>

Clow, D. W. (2010). Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. *Journal of Climate*, 23(9), 2293–2306. <u>https://doi.org/10.1175/2009JCLI2951.1</u>

Cominola, A., Giuliani, M., Castelletti, A., Fraternali, P., Gonzalez, S. L. H., Herrero, J. C. G., et al. (2021). Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. *npj Clean Water*, 4(29), 1–10. <u>https://doi.org/10.1038/s41545-021-00119-0</u>

Eakin, H., S. Eriksen, P. O. Eikeland, and C. Øyen. 2011. "Public Sector Reform and Governance for Adaptation: Implications of New Public Management for Adaptive Capacity in Mexico and Norway." Environmental Management 47: 338–51. doi:10.1007/s00267-010-9605-0.

Elias, E. H., A. Rango, C. M. Steele, J. F. Mejia, and R. Smith. 2015. "Assessing Climate Change Impacts on Water Availability of Snowmelt-Dominated Basins of the Upper Rio Grande Basin." *Journal of Hydrology: Regional Studies* 3: 525–46. doi:10.1016/j.ejrh.2015.04.004.

Ellison, J. C., Smethurst, P. J., Morrison, B. M., Keast, D., Almeida, A., Taylor, P., et al. (2019). Real-time river monitoring supports community management of low-flow periods. *Journal of Hydrology*, 572, 839–850. <u>https://doi.org/10.1016/j.jhydrol.2019.03.035</u>

References (cont.)

Engle, N. L. (2011). Adaptive capacity and its assessment. *Global Environmental Change*, 21(2), 647–656. https://doi.org/10.1016/j.gloenvcha.2011.01.019

Engle, N. L. 2013. "The Role of Drought Preparedness in Building and Mobilizing Adaptive Capacity in States and Their Community Water Systems." Climatic Change 118: 291–306. doi:10.1007/s10584-012-0657-4.

Fernald, A., Guldan, S., Boykin, K., Cibils, A., Gonzales, M., Hurd, B., et al. (2015). Linked hydrologic and social systems that support resilience of traditional irrigation communities. *Hydrology and Earth System Sciences*, *19*, 293–307. <u>https://doi.org/10.5194/hess-19-293-2015</u>

Fernández-Giménez, M. E., Batkhishig, B., Batbuyan, B., & Ulambayar, T. (2015). Lessons from the dzud: Community-based rangeland management increases the adaptive capacity of Mongolian herders to winter disasters. *World Development*, *68*(1), 48–65. <u>https://doi.org/10.1016/j.worlddev.2014.11.015</u>

Guldan, S. J., Fernald, A. G., Ochoa, C. G., & Tidwell, V. C. (2013). Collaborative community hydrology research in northern New Mexico. *Journal of Contemporary Water Research & Education*, 152(1), 49–54. <u>https://doi.org/10.1111/j.1936-704x.2013.03167.x</u>

Harpold, A., Brooks, P., Rajagopal, S., Heidbuchel, I., Jardine, A., & Stielstra, C. (2012). Changes in snowpack accumulation and ablation in the intermountain west. *Water Resources Research*, 48(11). https://doi.org/10.1029/2012WR011949

Llewellyn, D., Vaddey, S., Roach, J. D., & Pinson, A. (2013). West-wide climate risk assessment: Upper Rio Grande impact assessment. US Department of Interior, Bureau of Reclamation, Upper Colorado Regions, Albuquerque Area Office. Retrieved from http://www.usbr.gov/WaterSMART/wcra/reports/urgia.html

Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. (2018). Dramatic declines in snowpack in the western US. *Climate and Atmospheric Science*, *1*(1), 1–6. <u>https://doi.org/10.1038/s41612-018-0012-1</u>

Paul, J. D., Buytaert, W., Allen, S., Ballesteros-Cánovas, J. A., Bhusal, J., Cieslik, K., et al. (2018). Citizen science for hydrological risk reduction and resilience building. *Wiley Interdisciplinary Reviews: Water*, 5(1), e1262. https://doi.org/10.1002/wat2.1262

Seidl, R., & Barthel, R. (2017). Linking scientific disciplines: Hydrology and social sciences. *Journal of Hydrology*, 550, 441–452. https://doi.org/10.1016/j.jhydrol.2017.05.00

Smit, B. and J. Wandel. 2006. "Adaptation, Adaptive Capacity and Vulnerability." Global Environmental Change 16 (3): 282–92. doi:10.1016/j.gloenvcha.2006.03.008.

