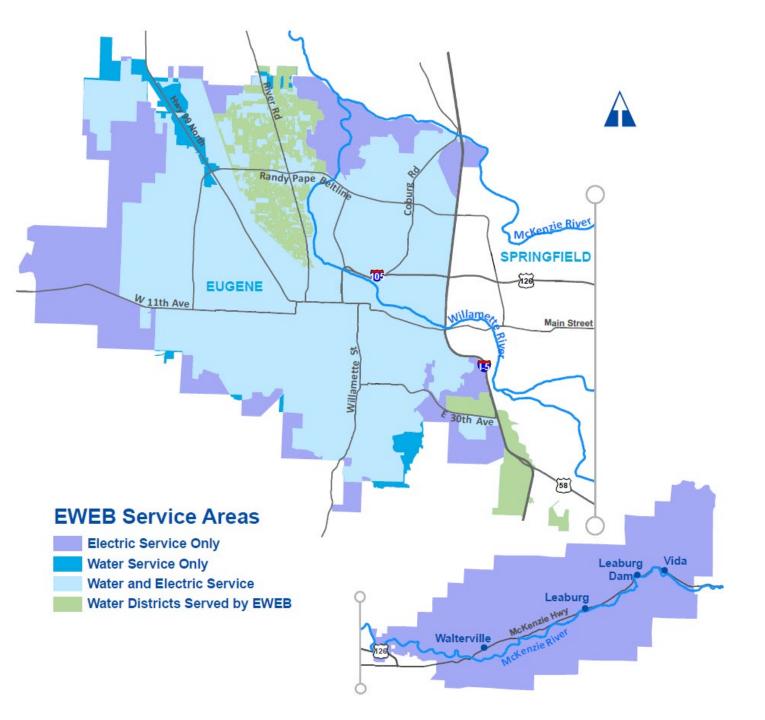
This presentation premiered at WaterSmart Innovations

watersmartinnovations.com



Consumption Profile Study AMI Interval Data Research and Applications

Canyon Jorgensen Data Analyst canyon.jorgensen@eweb.org Mike Bates Data Analyst mike.bates@eweb.org

EWEB Service Territory

- 101,092 Active Accounts (Water & Electric)
- 8,847 MG Water Delivered in 2020
- Served by Hayden Bridge WTP on McKenzie River
- 50% Water AMI Installation Complete
- 66% Electric AMI Installation Complete

Growing Population of Deployed AMI

Increased Meters Means Increased Data

What to Learn From the Data?

- Hourly Consumption Behavior
- Comparisons of Consumption Between Groups
- Trends of Consumption

Deployed AMI Meters with an 'On' Power Status as of 9/22/2021

Commodity	Meter Count	Daily Interval Reads
Electric	64,411	6,183,456
Water	31,783	762,792

Consumption Profile Study Purpose and Methodology

Determine whether EWEB **can** and **should** develop unique water and electricity consumption profile groups based on Location within EWEB Service Territory and Premise Attributes

Methodology

Three Sample Groups of Residential Premises with Water and Electric AMI Services

Meters Communicating Since at Least August 1, 2019

MDM Virtual Meter Interval Reads

Analysis of Variance (ANOVA) Testing

Regional Land Information Database of Lane County (RLID)

Consumption Profile Study Samples and Selection

Silver Study GroupMinda Study GroupRandom Study Group

Selection Criteria

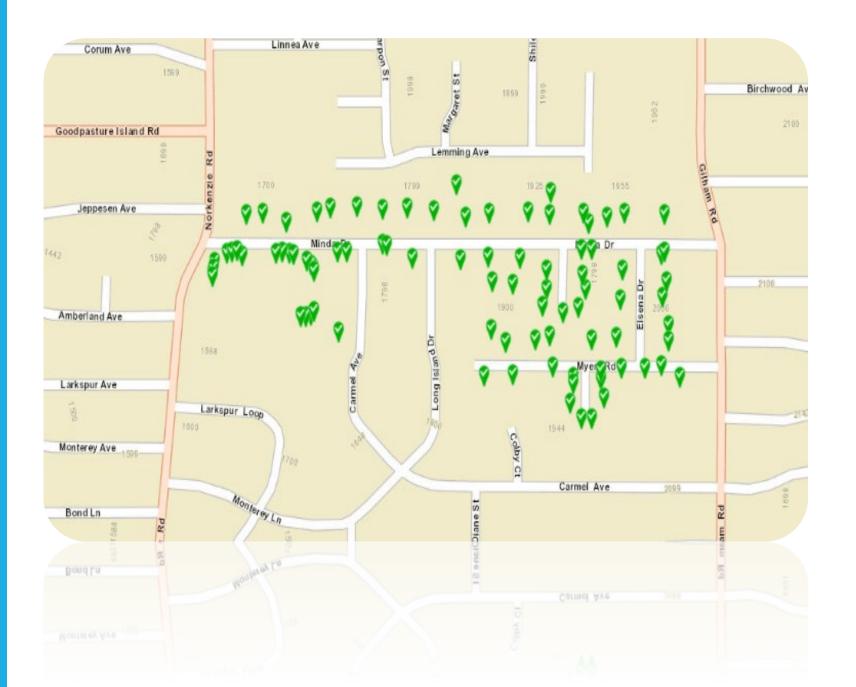
Dual Commodity AMI Services

Statistically Significant Representation of EWEB Service Population

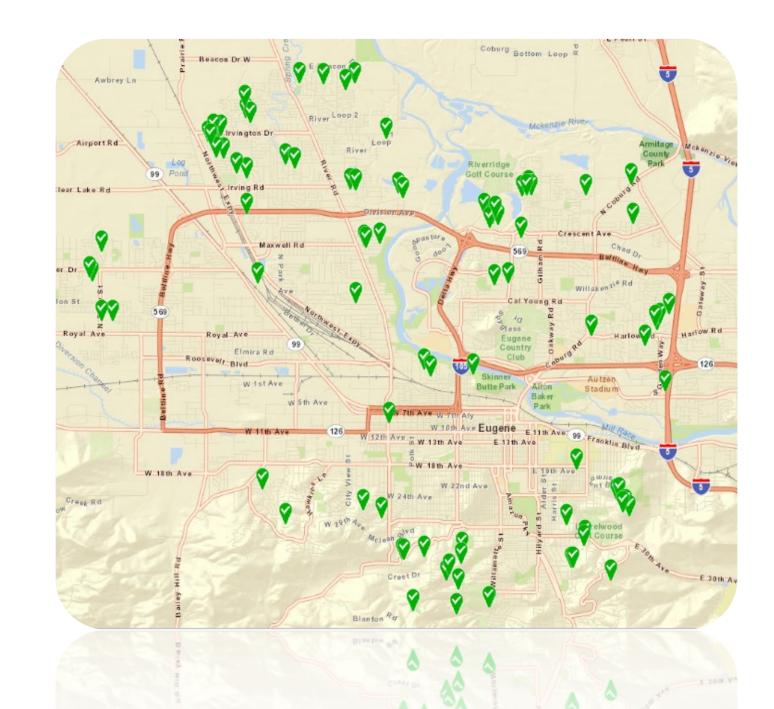
Distinct Locations Within EWEB Service Territory

Highly Communicating Meters

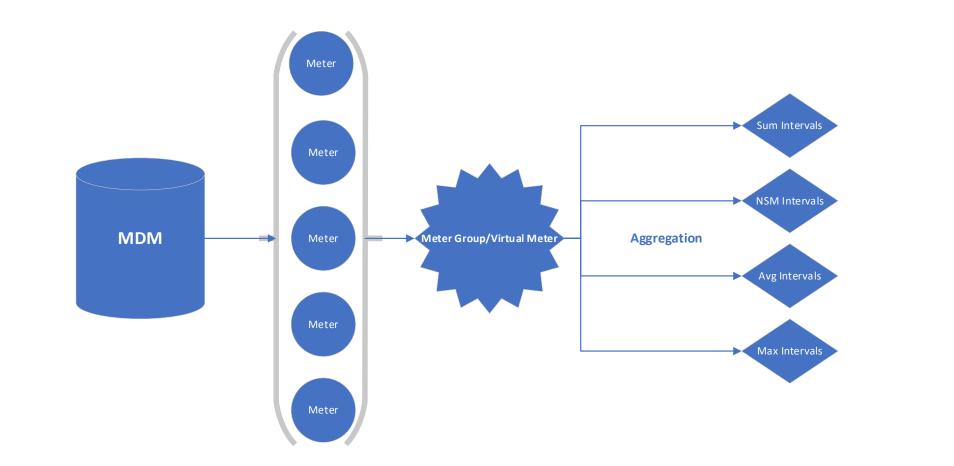
Proximity of Premises Within the Sample Group (Random Excluded)


Silver Study Group

- 92 Premises
- 92 Water Meters
 - 89 5/8" Meters
 - 3 1" Meters
- 95 Single Phase Electric Meters


Minda Study Group

- 89 Premises
- 90 Water Meters
 - 90 5/8" Meters
- 89 Single Phase Electric Meters

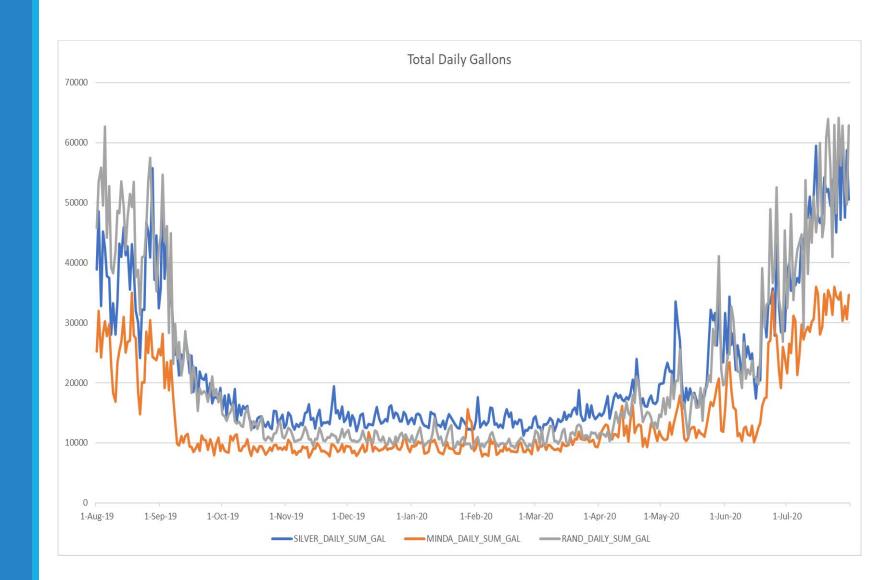


Random Study Group

- 91 Premises
- 92 Water Meters
 - 76 5/8" Meters
 - 14 1" Meters
 - 1 ³⁄₄" Meter
 - 11.5 " Meter
- 94 Single Phase Electric Meters

Meter Data Management and Virtual Meters

Meter Data Management and Virtual Meters


Virtual Meter Example				
Virtual Meter Type	Sum Aggregation			
Interval Time Period	1:00 P.M. – 2:00 P.M.			
Commodity Type	Water			

One Interval Read of 60 Gallons

Total Water Consumption by Study Group

- Silver Higher During Winter; Median in Summer
- Minda Lowest Year-Round
- Random Higher During Summer; Median in Winter

Total Electric Consumption by Study Group

- Silver Higher Year-Round
- Minda Lower Year-Round
- Random Median Year-Round

"YOUR SCIENTISTS WERE SO PREOCCUPIED WITH WHETHER THEY COULD THEY DIDN'T STOP TO THINK IF THEY SHOULD."

-DR. IAN MALCOLM

Statistical Analysis - Methods

Analysis of Variance (ANOVA) – Statistical model used to analyze the variability (variance) within and between sample groups of a population

Methodology	Google Translate
Determine Ratio (F-Score) of Variance of Between-Groups and Variance Within-Groups	Assign Score to any Variability
Interpret F-Score and Test Against the Null Hypothesis	Determine if enough Variability Exists
Conduct Post-Hoc Testing	Determine Where it Varies
Compare Results for Between- Groups Variation Significance	Rank the Variability
Interpret Final Results	Determine Groups that are Most Variable

Statistical Analysis - Results

Water Interval Findings

- Variance Greatest Between Silver and Minda Study Groups
- Variance Between Silver and Random Groups Considerably Lower than Between Other Groups
- Attributes that May Affect Water Consumption Behavior of Silver and Random Groups More Likely to be Similar

Electric Interval Findings

- Variance Greatest Between Silver and Minda Study Groups
- Variance Between Minda and Random Groups Considerably Lower than Between Other Groups
- Attributes that May Affect Electricity Consumption Behavior of Minda and Random Groups More Likely to be Similar

Service Location Attribute Analysis

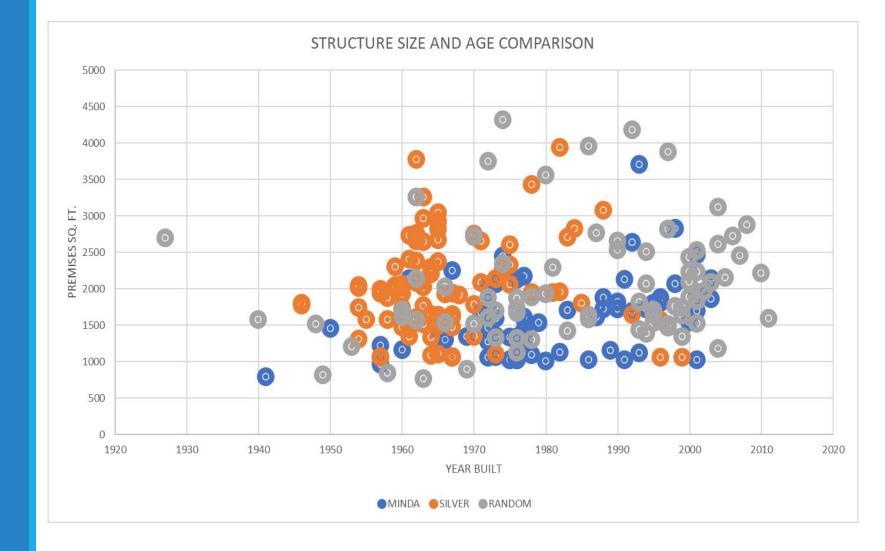
Regional Land Information Database of Lane County

Three Indicators for Analysis

Physical Attributes including Age of Home; Size of Home, and Size of Lot

Occupancy Type

Ownership



Service Location Attribute Analysis -Physical

STUDY GROUP	Average Effective Year Built	Average Total Base SQ FT	Average Acreage of Lot
MINDA	1979.64	1581.24	0.19
RANDOM	1984.86	2105.13	0.29
SILVER	1966.58	2065.18	0.25

Service Location Attribute Analysis -Physical

- Silver Larger and Older
- Minda Smaller and Newer
- Random Greater Distribution

Service Location Attribute Analysis – Occupancy Code

- Silver and Random Most Likely to Reflect Single Family Consumption Behavior
- Minda Most Likely Reflects Mixed Occupancy Consumption Behavior

STUDY GROUP	Occupancy Code Percent of Total
SILVER	
Duplex	2.17%
Single family	97.83%

STUDY GROUP	Occupancy Code Percent of Total
MINDA	
Duplex	11.24%
Single family	66.29%
Townhs-owner	22.47%

STUDY GROUP	Occupancy Code Percent of Total
RANDOM	
4-6 family	1.18%
Duplex	2.35%
Single family	92.94%
Townhs-owner	1.18%
Triplex	2.35%

Service Location Attribute Analysis – Ownership

- Silver Likely Lower Population of Rental Units
- Minda and Random Likely Higher Population of Rental units

STUDY GROUP	Percent of Prem/Owner Address Match		
SILVER			
Νο	15.22%		
Yes	84.78%		
MINDA			
No	32.58%		
Yes	67.42%		
RANDOM			
No	29.41%		
Yes	70.59%		

Consumption Profiles

Silver Premise Profile

PHYSICAL: Older Year Built, Median SQ FT, Median Lot Size

OCCUPANCY: Lower Deviation from Single Family

OWNERSHIP: Lower Population of Rental Units

Minda Premise Profile

PHYSICAL: Median Year Built, Lower SQ FT, Lower Lot Size

OCCUPANCY: Higher Deviation from Single Family

OWNERSHIP: Higher Population of Rental Units

Random Premise Profile

PHYSICAL: Newer Year Built, Higher SQ FT, Higher Lot Size

OCCUPANCY: Median Deviation from Single Family

OWNERSHIP: Median Population of Rental Units

Consumption Profile Analysis

- Occupancy and Ownership Effects on Consumption Behavior
- Square Footage and Lot Size
- Age of Structure at Premises

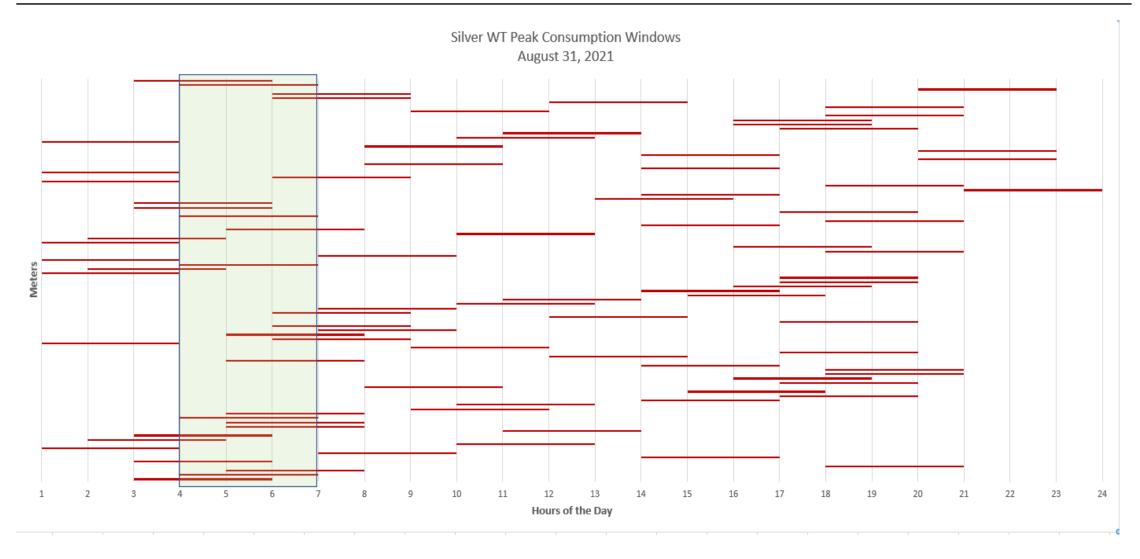
Water Study Group

Anova Ranking	Water Groups	Year Built	Square Footage	Lot Size	Occupancy	Ownership
1	Silver & Minda					
2	Minda & Random					
3	Random & Silver					

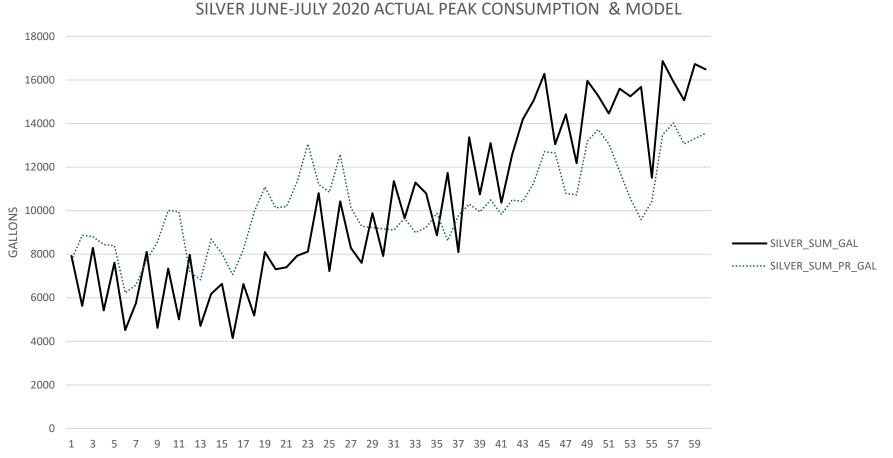
Electric Study Group

Anova Ranking	Electric Groups	Year Built	Square Footage	Lot Size	Occupancy	Ownership
1	Silver & Minda					
2	Random & Silver					
3	Minda & Random					

Conclusion of Findings and Recommendations


ANOVA and RLID Research

- Significant Variance between Study Groups
- Profiles Based on Location in EWEB Service Area
- Occupancy and Ownership Indicators Highest Affect on Variance
- Premise Structure Size Greater Affect on Variance in Water Consumption
- Premise Age Greater Affect on Variance in Electricity Consumption


Ongoing Efforts/Recommendations

- Introduction of Granular Time Components
- SQL Query Development for Continued Comparative Statistical Analysis (Peak Consumption)
- Data Visualization Development (GIS Partnership)
- Water Conservation and Marketing Applications
- Power Load Profile Analysis

Updates: Peak Consumption Analysis

Updates: Predictive Modeling

DAYS

Thank You!

Canyon Jorgensen Data Analyst canyon.jorgensen@eweb.org Mike Bates Data Analyst mike.bates@eweb.org