This presentation premiered at WaterSmart Innovations

watersmartinnovations.com
Estimating and Integrating Irrigation Efficiency Potential into Implementation Strategies

Jack C. Kiefer, Ph.D., Hazen and Sawyer
David Bracciano, Tampa Bay Water
Lisa R. Krentz, Hazen and Sawyer
Overview

Study area and objectives

Data collection

Analytical methods and findings

Conclusions and next steps
Tampa Bay Water

Regional water supply authority

2.5 million customers

6 member governments, across three counties

Experiencing growth, but susceptible to swings in economy
Tampa Bay Water’s Demand Management Planning

Historical planning and coordination role

- Regional Demand Database
- Demand Management Plan
- Evaluate Existing Programs
- Quantify Potential
Tampa Bay Water’s Demand Management Planning

2018 DMP Update includes evaluation of program implementation strategies

• Potential to reduce capacity development needs
• First linkage between DMP and how it gets implemented
• Includes outdoor programs
Current objectives related to landscape irrigation

- Identify customers using excess amounts of water
 - Estimated irrigation use versus “requirements”
 - Potential numbers of customers and quantities of water
 - Relationship to customer attributes and small geographic areas (parcels, developments, neighborhoods)

Implementation Focus

- How Much Water?
- How Many Customers?
- Where They Reside?
- Descriptive Profile?
Programmatic options and criteria selected in 2018 DMP

<table>
<thead>
<tr>
<th>Program Option</th>
<th>Targets</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Water Sources</td>
<td>“Surplus Irrigators” + Upper Quartile of “Deficit Irrigators”</td>
<td>Shallow wells</td>
</tr>
<tr>
<td>Florida Water Star</td>
<td>New Homes</td>
<td>New home certification program</td>
</tr>
<tr>
<td>Soil Moisture Sensors or ET Controllers</td>
<td>Existing Homes (with New Homes Option)</td>
<td>Watering technology</td>
</tr>
</tbody>
</table>
Information Needs

To estimate deficit/surplus irrigation
✓ Potable water consumption
✓ Irrigable area
✓ Theoretical irrigation requirements

To evaluate program targeting (and for analytics)
✓ Geographic locations
✓ Socioeconomic and property attributes
LTDFS Database

Long Term Demand Forecasting System database assembled and maintained for modeling

- Water Use
 - Consumption time series

- Appraiser Data
 - Property attributes

- Census
 - Assignable socioeconomics

- Climatic
 - Weather Obs

Hazen
Water Use Metrics Analyzed

Multi-year averages for each Single-Family location:

- Annual water use
- “Minimum month” use → Annual seasonal use
- High season average (April, May, June)
Theoretical Requirements

The equation for landscape water requirement (LWR) is given by:

\[LWR = RTM \times \left[(ET_o \times K_L) - (R_{CT} \times R_{pe}) \right] \times A \times C_u \]

Where:

- \(LWR \) = Landscape water requirement (gpy)
- \(RTM \) = Run-time multiplier (inverse of irrigation efficiency)
- \(ET_o \) = Reference evapotranspiration in inches per year
- \(K_L \) = Landscape coefficient for the dominant plant type
- \(R_{CT} \) = Census Tract precipitation in inches per year
- \(R_{pe} \) = Percent effective precipitation
- \(A \) = Greenspace estimate in square feet
- \(C_u \) = Conversion factor to express \(LWR \) in gpy

- Major assumptions taken from University of Florida research on turf-grass
- Precipitation estimates assigned by parcel according to Census Tract weather contour
Socioeconomic and property attributes for each location

- Total versus pervious area
- Home size (heated area)
- Assessed value (property, land, building)
- Year built and effective age
- Median income (block group assignment)
- Presence of pools
- Presence of devoted irrigation meters
- Access to reclaimed water source
Mean Consumption Metrics by Group (gallons per unit per day)

<table>
<thead>
<tr>
<th>“Seasonal” Use</th>
<th>April, May, June</th>
<th>Annual</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation Meter & Pool</td>
<td>621 gpud</td>
<td>537 gpud</td>
<td>292 gpud</td>
</tr>
<tr>
<td>Irrigation Meter Only</td>
<td>397 gpud</td>
<td>348 gpud</td>
<td>184 gpud</td>
</tr>
<tr>
<td>Pool Only</td>
<td>293 gpud</td>
<td>258 gpud</td>
<td>146 gpud</td>
</tr>
<tr>
<td>No Pool and No Irrigation Meter</td>
<td>189 gpud</td>
<td>174 gpud</td>
<td>105 gpud</td>
</tr>
</tbody>
</table>

Progressively lower seasonal peaking and minimum month use.
Effect of Reclaimed Water Access

Mean Consumption Metrics - No Irrigation Meter No Pool Group
(gallons per unit per day)

- No Reclaimed
- Reclaimed Access

Homes with access to reclaimed water use less water through the potable connection.

Seasonal signal even with alternative source?

Evidence of year-round irrigation.
Generalized Process for Evaluating Surplus Irrigation

Requirements Ratio = \(RR = \frac{\text{Estimated Seasonal Use}}{\text{Theoretical Requirements}} \)

\(RR > 1 \) defines “Surplus Irrigator”
Criteria for Identifying Irrigators

<table>
<thead>
<tr>
<th>Effort</th>
<th>Definition of “Irrigators”</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous DMP</td>
<td>Locations using > 177 gpud annually</td>
<td>Covers high water users</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Misses substantial number of small households</td>
</tr>
<tr>
<td>2018 DMP</td>
<td>Locations with high season use > 1.1 times annual average use</td>
<td>Captures more households on low use spectrum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Misses consistently high year-round users</td>
</tr>
<tr>
<td>Latest option (2018 DMP supplement)</td>
<td>No “irrigator” criteria used to screen</td>
<td>More inclusive by design</td>
</tr>
</tbody>
</table>
Estimated Proportions of Deficit/Surplus Irrigation
(Single-Family Locations without Reclaimed Water)

Requirements Ratio = \(\frac{\text{Estimated Seasonal Use}}{\text{Theoretical Requirements}} \)

Deficit: 86%
Surplus: 14%
Estimated Proportions of Deficit/Surplus Irrigation (Single-Family Locations without Reclaimed Water)

Upper Quartile Deficit + Surplus

\[\sim 36\% \]
Proportion of Sample Groups Exceeding Estimated Watering Requirements
(Single Family without Reclaimed Access)

Irrigation Meter Only: 41.2% (n = 1,359)
Irrigation Meter & Pool: 39.7% (n = 1,027)
Pool Only: 16.3% (n = 14,630)
No Pool and No Irrigation Meter: 12.8% (n = 33,748)
Proportion of Estimated Total "Surplus" Water Use by Group (No Reclaimed Access)

- Irrigation Meter Only: 3.4%
- Irrigation Meter & Pool: 3.3%
- Pool Only: 34.2%
- No Pool and No Irrigation Meter: 62.5%
20% of Locations → 54% of surplus
or
10,153 locations → 2.5 MGD

5% of Locations → 22% of surplus
or
2,539 locations → 1 MGD

0.1% of Locations → 2% of surplus
Mean surplus = 1,763 gpd
Estimated Surplus by Range of Requirements Ratio

<table>
<thead>
<tr>
<th>Requirements Ratio</th>
<th>Number of Locations</th>
<th>Cumulative Surplus (MGD)</th>
<th>Marginal Surplus (MGD)</th>
<th>Estimated Surplus (gpud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 1.25</td>
<td>12,903</td>
<td>0.2</td>
<td>0.2</td>
<td>19</td>
</tr>
<tr>
<td>1.26 to 1.50</td>
<td>8,651</td>
<td>0.7</td>
<td>0.5</td>
<td>53</td>
</tr>
<tr>
<td>1.51 to 2.00</td>
<td>10,375</td>
<td>1.6</td>
<td>0.9</td>
<td>88</td>
</tr>
<tr>
<td>2.01 to 3.00</td>
<td>9,062</td>
<td>2.8</td>
<td>1.2</td>
<td>132</td>
</tr>
<tr>
<td>3.01 to 4.00</td>
<td>3,585</td>
<td>3.4</td>
<td>0.6</td>
<td>160</td>
</tr>
<tr>
<td>4.01 to 5.00</td>
<td>1,900</td>
<td>3.7</td>
<td>0.3</td>
<td>179</td>
</tr>
<tr>
<td>5.01 to 6.00</td>
<td>1,075</td>
<td>3.9</td>
<td>0.2</td>
<td>192</td>
</tr>
<tr>
<td>6.01 to 7.00</td>
<td>647</td>
<td>4.1</td>
<td>0.1</td>
<td>192</td>
</tr>
<tr>
<td>7.01 to 8.00</td>
<td>438</td>
<td>4.2</td>
<td>0.1</td>
<td>188</td>
</tr>
<tr>
<td>8.01 to 9.00</td>
<td>365</td>
<td>4.2</td>
<td>0.1</td>
<td>205</td>
</tr>
<tr>
<td>9.01 to 10.00</td>
<td>253</td>
<td>4.3</td>
<td>0.1</td>
<td>227</td>
</tr>
<tr>
<td>>10.00</td>
<td>1,510</td>
<td>4.6</td>
<td>0.3</td>
<td>220</td>
</tr>
</tbody>
</table>

Possibility to target majority of surplus, while reducing risk of imprecision in estimates
Proportion Exceeding Estimated Watering Requirements by Water Demand Planning Area (No Reclaimed Access)

- South Central Hillsborough Co.: 26.7%
- Northwest Hillsborough Co.: 24.5%
- City of Tampa: 14.8%
- Pasco Co.: 12.2%
- New Port Richey: 1.5%
- Pinellas Co.: 1.4%
- St. Petersburg: 0.4%
All Identified as Surplus

Ability to define neighborhoods and HOAs

>10x Theoretical Requirements
Explanatory Factors: Median Income

Surplus Irrigators tend to live in higher income areas

<table>
<thead>
<tr>
<th>Surplus_ID</th>
<th>N Obs</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>308,039</td>
<td>55,559</td>
<td>51,524</td>
</tr>
<tr>
<td>1</td>
<td>50,764</td>
<td>70,778</td>
<td>68,083</td>
</tr>
</tbody>
</table>
Explanatory Factors: Heated Area

Surplus Irrigators tend to live in larger homes

<table>
<thead>
<tr>
<th>Surplus_ID</th>
<th>N Obs</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>308,039</td>
<td>2,257</td>
<td>2,045</td>
</tr>
<tr>
<td>1</td>
<td>50,764</td>
<td>3,679</td>
<td>3,724</td>
</tr>
</tbody>
</table>
Explanatory Factors: Effective Age of SF Home

Surplus Irrigators tend to live in newer homes

<table>
<thead>
<tr>
<th>Surplus_ID</th>
<th>N Obs</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>308,039</td>
<td>27.26</td>
<td>27.00</td>
</tr>
<tr>
<td>1</td>
<td>50,764</td>
<td>13.54</td>
<td>11.00</td>
</tr>
</tbody>
</table>
Proportion Exceeding Estimated Watering Requirements by Effective Age Cohort
(Single Family without Reclaimed Access)

Effective Age in Years

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6</td>
<td>56.4%</td>
</tr>
<tr>
<td>6 to 10</td>
<td>43.4%</td>
</tr>
<tr>
<td>11 to 15</td>
<td>26.7%</td>
</tr>
<tr>
<td>16 to 20</td>
<td>12.5%</td>
</tr>
<tr>
<td>21 to 30</td>
<td>5.5%</td>
</tr>
<tr>
<td>31 to 40</td>
<td>2.5%</td>
</tr>
<tr>
<td>41 to 50</td>
<td>2.7%</td>
</tr>
<tr>
<td>> 50</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Proportion “Surplus” Decreases with Home Age
Predictive Analytics Framework

Statistical model that predicts likelihood of being a surplus irrigator

Statistical controls:
✓ Pervious area (-)
✓ Median income (+)
✓ Heated area (+)
✓ Effective age (-)
✓ Presence of pool (+)
✓ Presence of irrigation meter (+)
Example of predicted probabilities of being a Surplus Irrigator

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Hypothetical Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Effective age</td>
<td>2</td>
</tr>
<tr>
<td>Median income</td>
<td>200,000</td>
</tr>
<tr>
<td>Heated area</td>
<td>3000</td>
</tr>
<tr>
<td>Pervious area</td>
<td>1000</td>
</tr>
<tr>
<td>Pool (0/1)</td>
<td>1</td>
</tr>
<tr>
<td>Irrigation meter (0/1)</td>
<td>1</td>
</tr>
<tr>
<td>Prob(Surplus)</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Conclusions

• About half of Agency’s demand management goal could be met by eliminating surplus irrigation
 • Program participation rates likely to reduce savings below estimated potential

• Savings potential identifiable geographically and by quantity thresholds
 • Objective is to refine targets to maximize B/C ratio
 • Focus on more extreme cases to address uncertainties in calculations
Conclusions

• Generalized attributes of program targets provides program focus

 • Relatively new, larger homes, on relatively smaller lots in higher income areas

 • Accounting for influence of other factors, surplus use may decrease with time without changing sources or technologies
Next Steps - Implementation

Design implementation plan(s) focused on:

1. New Homes - offer Florida Water Star funds to facilitate paradigm shift in the new home market
2. Existing homes - provide Alternative Source incentives to surplus irrigators and the upper quartile of deficit irrigators
3. Existing homes – promote Soil Moisture Sensors and ET Controller installation where Alternative Sources (shallow wells) are precluded
Next Steps - Analytics

• Continue data updates and model refinements
 • Extend data to capture more historical time periods up to current data
 • Update and integrate predictive model within GIS
 • Once programs are implemented, incorporate and model attributes of program participants
 • Perform a pilot application of the model to assess tangible benefits for optimizing costs/value of implementation
Thank you!

Jack C. Kiefer, PhD
(618) 889-0498
jkiefer@hazenandsawyer.com

David Bracciano
(727) 791-2313
DBracciano@tampabaywater.org

Lisa R. Krentz
(813) 549-2120
lkrentz@hazenandsawyer.com