This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Salinity gradient grid-scale energy storage with water production

Sandra Patricia Córdoba Rentería Warsinger Water Lab Purdue University October 3th, 2019

Outlook:

- 1. Motivation
- 2. Demand response technology
- 3. Demand response in reverse osmosis
- 4. Modelled configurations
- 5. Split reverse osmosis: Power demand variations
- 6. Demand response applied with electric utilities Economic analysis

7. Conclusions

Seawater reverse osmosis energy consumption over time:

Menachem, E, William A.P. (2011, August 05). Retrieved from https://science.sciencemag.org/content/333/6043/712 Typical *SWRO OPEX breakdown

Dhananjay, M. (2018, February 2015). Retrieved from: https://www.advisian.com/en-us/global-perspectives/the-cost-of-desalination

Energy demand profile:

Electricity demand [GW]

- Add flexibility to the systems
- Shifting electricity usage during different periods of the day
- Energy storage

6

Demand response technology: Demand response (DR) can be defined as the changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time.

World Energy Outlook 2017, (2017, November 14)

https://www.iea.org/newsroom/energysnapshots/impact-of-demand-on-a-daily-load-curve.html

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.

Energy consumption of continuous and time-variant RO configurations for various recovery ratios with 3 g/kg NaCl feed.

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.

The plant can dramatically vary its energy needs and thus allow it to be a demand response-type system. When power is plentiful, it desalinates from medium to high salinity, if not, low to medium. Therefore the chemical potential from differences in salinity acts as the energy storage medium.

Modelled configurations:

Continuous reverse osmosis (RO)

$$W_{RO} = \frac{\pi_b + \Delta P_t + N \Delta P_l}{\eta_p RR}$$

Where:

 W_{RO} : Specific energy consumption π_b : Osmotic pressure ΔP_t : Terminal overpressure

 ΔP_l : Viscous losses each pass

RR : Recovery ratio

 η_p : Pump efficiency

N : Number of stages

Modelled configurations:

Continuous reverse osmosis + pressure exchanger (RO-PX)c

Reverse Osmosis modules

 ΔP_t : Terminal overpressure

 ΔP_l : Viscous losses each pass

 η_p : High pressure pump efficiency

 η_{px} : Pressure exchanger efficiency

 η_b : Booster pressure pump efficiency

 π_h : Osmotic pressure

Modelled configurations:

Batch Reverse Osmosis:

Applied pressure vs RR for continuous and batch RO feed salinity: 3 [g/kg]

Batch RO: High Pressure Tank Concept

D. M. Warsinger¹, E. W. Tow¹, K. Nayar, and J. H. Lienhard V, "Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination," *Water Research*, vol. 106, pp. 272-282, 2016.

D. M. Warsinger, E. W. Tow, R. McGovern, G. Thiel, and J. H. Lienhard V. Batch Pressure-Driven Membrane Separation with Closed-Flow Loop and Reservoir. *Full Patent Application, US non-provisional application No.* 15/350,064 November 2016

Modeled configurations: Batch reverse osmosis - modeling process

$$J_w = A(\Delta P - \Delta \pi)$$

$$\Delta C_m = C_{cm} - C_{sup}$$

$$\frac{\partial C(y)}{\partial t} + J_w \frac{\partial C(y)}{\partial y} = D \frac{\partial^2 C(y)}{\partial y^2}$$

 $J_s = B\Delta C_m$

 C_{cb} : Bulk concentration in the feed side C_{cm} : Feed side concentration in the membrane C_{sup} : Concentration in the support layer C_{dm} : Concentration in the membrane in the permeate side C_{db} : Bulk concentration in the permeate side

 J_w : Water Flux

 J_s : Salt Flux

 ΔP : Pressure difference

 $\Delta \pi$: Osmotic pressure difference

A: Membrane permeability Coefficient

B: Salt permeability Coefficient

Reverse osmosis - model results: specific energy consumption

Reverse osmosis: split process

Energy storage Capacity vs ratio of RR

Power demand variations for split processes :

Demand response applied to electric utilities – Economic Analysis

Demand response programs

Albadi, M.H., El-Saadany, E.F., 2007. Demand Response in Electricity Markets: An Overview. IEEE

Demand response applied to electric utilities – Economic analysis

Case 1: Sea Water Feed Salinity: 35 [g/Kg] Final RR: 50 % Plant Capacity: 200000 [m^3/day] Off-peak price: 0.22 [usd/Kwh] On-peak price: 0.41 [usd/Kwh] Off-Peak time = 12 [hours]

Energy cost difference: -37%

Energy cost difference: 17%

Energy cost difference: 6 %

Demand response applied to electric utilities – Economic analysis

Case 2: Brackish Water Feed Salinity: 15 [g/Kg] Final RR: 90 % Plant Capacity: 200000 [m^3/day] Off-peak price: 0.22 [usd/Kwh] On-peak price: 0.41 [usd/Kwh] Off-Peak time = 12 [hours]

Continuous RO + PX Continuous RO Batch RO \$500,000.00 \$120,000.00 \$400,000.00 \$100,000.00 \$400,000.00 \$300,000.00 \$80,000.00 \$300,000.00 \$60,000.00 \$200,000.00 \$200,000.00 \$40,000.00 \$100,000.00 \$100,000.00 \$20,000.00 \$0.00 \$0.00 \$0.00 Off peak Peak Total Total cost Off peak Peak Total Total cost Off peak Peak Total Total cost **Total Cost** Cost **Total Cost** Cost **Total Cost** Cost Split Process No split process Split process No split process Split process No split process Energy cost difference: 18% Energy cost difference: 39% Energy cost difference: 52%

Conclusions:

- Reverse osmosis technology may turn into a demand-response type of process by splitting it in different stages.
- The configuration where the continuous reverse osmosis is paired with a pressure exchanger stands out as the variation where the highest energy variations may be obtained.
- The ability of changing the power demand in the reverse osmosis plants allows its integration with different sources of renewable energies.

References:

Warsinger, D.M., Tow, E.W., Nayar, K.G., Maswadeh, L.A., Lienhard V, J.H., 2016. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Research, vol. 106, pp. 272-282.

Wei, Quantum J. et al. "Batch reverse osmosis: experimental results, model validation and design implications." 2019 AMTA/ AWWA Membrane Technology Conference & Exposition, February 2019 2019, New Orleans, Louisiana, American Membrane Technology Association, February 2019.

Albadi, M.H., El-Saadany, E.F., 2007. Demand Response in Electricity Markets: An Overview. IEEE

Acknowledges:

FULBRIGHT Colombia

Warsinger Water Lab

Prof. David M. Warsinger Phd Candidate Abhimanyu Das