This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

High Resolution Geospatial Mapping of Actual Evapotranspiration Using Small UAS Based Imagery for Site Specific Irrigation Management

Abhilash Kumar Chandel*

B. Molaei, L.R. Khot, T.R. Peters and C.O. Stöckle

*Ph.D. Student

Center for Precision and Automated Agricultural Systems

Department of Biological Systems Engineering

Washington State University

WaterSmart Innovations Conference and Exposition, 2019 Las Vegas, Nevada

Outline

□ Background

□ Hypothesis and objectives

□ Methods

□ Results

□ Conclusions

□ Future plan and scope

Water: the most critical resource

Source: NASA

Covers 71 % of earth

- 96.5 % in oceans/ seas
- Only 0.77 % of fresh water

Agriculture

- Accounts over 80% of the US consumptive use
- Biggest consumer of fresh water about 70% (globally)

Source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources (Oxford University Press, New York).

Current challenges

- Population
- Food demand
- Climate change impacts
- Arid and semi arid areas

Source: Spiegel online

Area under irrigation

- Fresh water availability
- Net cultivation area
- Rainfed agriculture
- Ground water

Conventional irrigation practices

Constant or over irrigation

"This calls for specific/ precision irrigation management tools at local/grower level"

- Irrigation management requires accurate estimates of actual crop water demands at field level.
- Evapotranspiration (ET)
 - Amount of water lost by plants and soil to the atmosphere
 - Indicator of actual plant water requirements

Current methods of ET estimation

- Small/ point scale:
 - Lysimeters, neutron probes, soil moisture measurements, point measurement tools etc.
 - Limited sampling accuracy and laborious

Neutron probe Source: Good fruit grower, WSU

Lysimeter Source: environmentalbiophysics.org

Crop gas exchange measurement

Leaf Porometer Source: Meter group

Sap flow meter Source: Davis et al., 2012

❑ Weather based estimations of ET:

- Penman Monteith method and typical crop coefficients
- Irrigation scheduling tools examples
 - WSU irrigation scheduler and AgWeather network (Washington State University),
 - Irrigation management online (Oregon State University)
 - CropManage (University of California)
- Limitations: standard crop coefficients may not be the same within field and globally

	irrigation scheduler mobile)						
7-Da	y Dail	y Budg	et Table	_			
Field	Apples 2	2015 demo, 2	015; Apples	0			
Date	Water Use (in)	Rain & Irrig (in)	Avail. Water (%)	Water Deficit (hrs)	Edit Data		
06/25	0.43	0.00	61.4	7	Edit		
06/26	0.41	12.00	100	0	Edit		
06/27	0.41	0.00	79.5	3.7	Edit		
06/28	0.48	0.00	55.7	8.1	Edit		
06/29	0.4	0.04	37.9	11.3	Edit		
06/30	0.45	12.00	100	0	Edit		
07/01	0.43	0.00	78.4	3.9	Edit		
<u> << <</u>	<< <<< Jun 25, 2015 >>> >>						
		4	Dashboa	ard			
		📝 Dai	ly Budge	t Table			
	🔝 Soil Water Chart						
More Charts							
Breid Settings							
	+- Add/Delete Fields						
	Privacy About Us Contact Us						
	Logour Desktop Website Help						

Courtesy: http://www.weather.wsu.edu/

7

□ Large scale: Remote sensing and energy balance

- Remote sensing: satellites
 - Low spatial resolution ex: Landsat 7/8 (~30 m) and MODIS (1 km)
 - Large recurrence period (~16 days) and cloud cover limitations
 - Unsuitable for high resolution spatiotemporal mapping
- Small unmanned aerial systems (UAS)
 - High spatial and temporal resolution
 - On-demand data

Energy balance models

- Single source (crop transpiration and soil evaporation combined)
- Dual source (separate crop transpiration and soil evaporation)
 - **Complex measurements**
 - Limited adaptability
- **METRIC** (Allen et al., 2007)
 - Developed for satellite-based imagery data (multispectral and thermal)
 - Widely adopted, robust and independent of crop specifications
 - Internal calibration using stressed and unstressed conditions

Hypothesis and Objectives

Problem statement and hypothesis

- Site specific irrigation management at field level
- Integration of high-resolution imagery data to energy balance model

Objectives

- METRIC energy balance model for high spatiotemporal mapping of actual evapotranspiration using small UAS based multispectral and thermal infrared imagery
- Comparison and validation of the modified METRIC with the conventional approaches

Data collection

- Season: 2018
- Selected crops
 - Potato
 - Grapevine
 - Alfalfa
 - Spearmint

□ Irrigation methods

Potato: center pivot

Alfalfa: wheel line

Grapevines: surface and sub-surface drip

Spearmint: center pivot

□ Data collection (cont.)

- Imagery data
 - Visible, near-infrared and thermal infrared
- Imaging platforms (overlapped missions)
 - Small UAS
 - Landsat 7/8 satellites
- Weather data: (WSU AgWeathernet network)

Small UAS

to the base of the

Source: WSU AgWeathernet

Table 1. Imaging sensor specifications

Platform	Imaging sensor	Spectral Bands	Ground sampling distance		
Small UAS	Five band multispectral	Red, Green, Blue, NIR and Red Edge	6.9 cm/pixel @ 100m		
	Thermal	Long wave infrared	13.20 cm/pixel @ 100m		
Satellite (Landsat 7/8)	Multispectral	Red, Green, Blue, NIR, SWIR	30 m/pixel		
	Thermal Long wave in		30 m/pixel		

Table 2. Data collection dates

Day of year (DOY)	Date	Сгор	Nearest AgWeathernet		
			station		
175	06/24/2018	Mint	Toppenish		
184	07/03/2018	Potato	Wheelhouse		
191	07/10/2018	Alfalfa	Roza		
192	07/11/2018	Grapevine	Benton City		
207	07/26/2018	Grapevine	Benton City		
207*	07/26/2018	Potato	Wheelhouse		
208	07/27/2018	Potato	Wheelhouse		
208*	07/27/2018 om Landsat 7/8 for sam	Grapevine	Benton City		
223	08/11/2018	Alfalfa	Roza		

14

Adapting METRIC energy balance

- Surface albedo
- Leaf area index: using fraction canopy cover
- Digital land surface elevation model
- Incoming short-wave radiation (~2 m AGL)
- Surface temperature map

High resolution imagery data preprocessing and processing illustration

Results: Potato

Results: Grapevine

Results: Alfalfa

Results

Results (Mean of actual crop ET maps)

Table 4. Comparison of mean actual crop ET mapped from different approaches

	Approach/ Platform	RMSE	MBE	RMSE	MBE	Difference
		(mm/day)	(mm/day)	(%)	(%)	
	SUASM-LM	0.56	0.02	10.72	0.29	
	SUASMM-LM	0.53	0.05	10.20	1.04	NS
	SUASM-FAO-Kc	1.63	-1.37	24.79	-20.81	(P>0.05)
V	SUASMM-FAO-Kc	1.43	-1.33	21.72	-20.22	
4	T INIVERSITY					

Results (Std. Dev. in actual crop ET maps)

Table 5. Standard deviation in actual crop ET maps		(day) 3.(
Approach/ Mean Std. Dev. in actual crop ET maps		ET (mm 2.0		(
Platform	(mm/day)	. actual 0				
SUASM	1.55	Std. Dev				
SUASMM	1.24	0.0				
LM	0.31		FAO-Kc	LM Pi	SUASM atform	SUASMM
FAO-Kc	0	Po	otential for	spatial \	/ariability	assessment

Table 6. Comparison of standard deviation in actual crop ET maps from different approaches

Approach/ Platform	RMSE	Difference	Groups	
	(mm/day)			
LM-SUASM	1.47		b, a	
LM-SUASMM	1.14	S	b, a	
FAO-Kc-SUASM	1.73	(P<0.05)	b, a	
FAO-Kc-SUASMM	1.40		b, a	

Conclusions

□ High spatial resolution- METRIC

- Better handling of heterogeneous pixels (soil and crop)
- High resolution mapping of spatial variations in crop water demand
- Suitable for tree fruit crops

Future plan and scope

- Model local calibration using artificial reference materials (Hot and Cold)
- Crop ET estimation with reliable soil water balance approach
- Validation and improvement of SUASMM with soil water balance approach
- Site specific irrigation prescription maps

Acknowledgments

- This project was funded by USDA-NIFA and College of Agricultural, Human, and Natural Resource Sciences, Washington State University
- Dr. Pete Jacoby, Dr. Mark Pavek, Dr. Rajeev Sinha, Mr. Paco Gonzalez-Tapia, Mr. Xiaochi Ma and Mr. Austin for their assistance during data collection
- Kiona vineyards, Landon Lommers (Mint grower, Toppenish), Troy Grimes (Potato grower, Paterson) and WSU-Roza farms management team
- Universities Council on Water Resources

WASHINGTON STATE

World Class. Face to Face.

United States Department of Agriculture National Institute of Food and Agriculture

Thank You

Questions/ suggestions ?

