
This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Are Prescriptive Landscape Ordinances Measuring up to Actual Water Savings?

East Bay Municipal Utility District Overview

EBMUD Service Area

- 1.4 million customers
- 85% residential
- · 160 mgd demand
 - 210 mgd pre-drought
- · 35 communities
- Coastal/Inland microclimates
- · 330 square miles
- · 4,200 miles of pipe
- · 400,000 meters

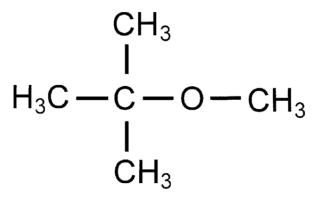
"Relating to the imposition or enforcement of a rule or method"

For more step by step drawing tutorials visit us at www.drawingtutorials101.com

MWELO Regulation

- <u>No overhead spray</u> with in 24 inch non-permeable surface
- <u>No more than 25%</u> of the total irrigated area shall be turf
- <u>Grading plan</u> A comprehensive grading plan prepared by a civil engineer for other local agency permits satisfies this requirement
- <u>Certification</u> All landscape irrigation audits shall be conducted by a local agency landscape irrigation auditor or a third party certified landscape auditor
 - <u>Soils Test</u>...

Examples of Past Prescriptive Requirement



Catalytic Converters

- MTBE (fuel additive in California)
- S

· 1.6 toilets

MWELO Model Water Efficient Landscape Ordinance

- AB 325 (1993)
 - Deemed ineffective and unenforceable
- · AB 1881 (2010)
 - Updated based on stakeholder task force
- EO B-29-15
 - Update due to drought pressures

MWELO Regulation

BARCLAYS CALIFORNIA CODE OF REGULATIONS

Title 23 § 492.8

BARCLAYS CALIFORNIA CODE OF REGULATIONS

Title 23

(S) Check valves or anti-drain valves are required on all sprinkler heads where low point drainage could occur.

(T) Areas less than ten (10) feet in width in any direction shall be irrigated with subsurface irrigation or other means that produces no runoff or overspray.

(U) Overhead irrigation shall not be permitted within 24 inches of any non-permeable surface. Allowable irrigation within the setback from non-permeable surfaces may include dry, dry line, or other low flow non-spray technology. The setback area may be planted or unplanted. The surfacing of the setback may be mulch, gravel, or other porcous material. These restrictions may be modified if.

 the landscape area is adjacent to permeable surfacing and no runoff occurs; or

 the adjacent non-permeable surfaces are designed and constructed to drain entirely to landscaping; or

3. the irrigation designer specifies an alternative design or technology, as part of the Landscape Documentation Package and clearly demonstrates strict adherence to irrigation system design criteria in Section 492.7 (a)(1)(1). Prevention of overspray and runoff must be confirmed during the irrigation andit.

(V) Slopes greater than 25% shall not be irrigated with an irrigation system with a application rate exceeding 0.75 inches per hour. This restriction may be modified if the landscape designer specifies an alternative design or technology, as part of the Landscape Documentation Package, and clearly demonstrates no runoff or erosion will occur. Prevention of runoff and erosion must be confirmed during the irrigation sudit. (2) Hydrozone

(2) Hydrozone

6 492.8

(A) Each valve shall irrigate a hydrozone with similar site, slope, sun exposure, soil conditions, and plant materials with similar water use.

(B) Sprinkler heads and other emission devices shall be selected based on what is appropriate for the plant type within that hydrozone.
(C) Where feasible, trees shall be placed on separate valves from

(c) where restore, uses takin to pince on separate varies from shrubs, groundcovers, and turf to facilitate the appropriate irrigation of trees. The mature size and extent of the root zone shall be considered when designing irrigation for the tree.

(D) Individual hydrozones that mix plants of moderate and low water use, or moderate and high water use, may be allowed if:

 plant factor calculation is based on the proportions of the respective plant water uses and their plant factor; or

2. the plant factor of the higher water using plant is used for calculations.

(E) Individual hydrozones that mix high and low water use plants shall not be permitted.

(F) On the landscape design plan and irrigation design plan, hydrosone areas shall be designated by number, latter, or other designation. On the irrigation design plan, designate the areas irrigated by each valve, and as sign a number to each valve. Use this valve number in the Hydrozone Information Table (exe Appendix B Section A). This table can also assist with the singation andit and programming the controller.

(b) The irrigation design plan, at a minimum, shall contain:

(1) location and size of separate water meters for landscape;

(2) location, type and size of all components of the irrigation system, including controllers, main and lateral lines, valves, sprinkler heads, moisture sensing devices, rain switches, quick couplers, pressure regulators, and backflow prevention devices;

(3) static water pressure at the point of connection to the public water supply;

(4) flow rate (gallons per minute), application rate (inches per hour), and design operating pressure (pressure per square inch) for each station; (5) recycled water irrigation systems as specified in Section 492.14;

(6) the following statement: "I have complied with the criteria of the ordinance and applied them accordingly for the efficient use of water in

the irrigation design plan"; and (7) the signature of a licensed landscape architect, certified irrigation

designer, licensed landscape contractor, or any other person authorized

to design an irrigation system. (See Sections 5500.1, 5615, 5641., 5641.1, 5641.2, 5641.3, 5641.4, 5641.5, 5641.6, 6701, 7027.5 of the Business and Professions Code, Section 832.27 of Title16 of the California Code of Regulations, and Section 6731 of the Food and Agricultural Code.) NOTE: Authority cited. Section 65395, Government Code; and sections 11 and 30, Government Exec. Order No. B-30-15 (April 1, 2015) Reference Section 65396, Government Code; and section 11, Governor's Exec. Order No. B-29-15 (April 1, 2015).

HISTORY

 New section filed 9–10–2009; operative 9–10–2009 pursuant to Government Code section 11343.4 (Register 2009, No. 37).

 Amendment of section and Noτπ filed 9–15–2015; operative 9–15–2015. Exempt from OAL review and submitted to OAL for printing only pursuant to Governor's Executive Order No. B–29–15(41–12015)(Register 2015, No. 38).

§ 492.8. Grading Design Plan.

(a) For the efficient use of water, grading of a project site shall be designed to minimize soil erosion, ranoff, and water waste. A grading plan shall be submitted as part of the Landscape Documentation Package. A comprehensive grading plan prepared by a civil engineer for other local agency permits satisfies this requirement.

(1) The project applicant shall submit a landscape grading plan that indicates finished configurations and elevations of the landscape area including:

- (A) height of graded slopes;
- (B) drainage patterns;
- (C) pad elevations;
- (D) finish grade; and

(E) stormwater retention improvements, if applicable.

(2) To prevent excessive erosion and runoff, it is highly recommended that project applicants:

(A) grade so that all irrigation and normal rainfall remains within property lines and does not drain on to non-normable hardscape;

(B) avoid disruption of natural drainage patterns and undisturbed soil;

(C) avoid soil compaction in landscape areas.

(3) The grading design plan shall contain the following statement: "I have complied with the criteria of the ordinance and applied them accordingly for the efficient use of water in the grading design plan" and shall

bear the signature of a licensed professional as authorized by law. NOTE Authority cited: Section 65595, Government Code, Reference: Section

65596, Government Code.

HISTORY 1. New section filed 9–10–2009; operative 9–10–2009 pursuant to Government Code section 11343.4 (Register 2009, No. 37).

- § 492.9. Certificate of Completion.
- (a) The Certificate of Completion (see Appendix C for a sample certif-
- icate) shall include the following six (6) elements:
- (1) project information sheet that contains:
- (A) date;
- (B) project name
- (C) project applicant name, telephone, and mailing address; (D) project address and location: and
- (E) property owner name, telephone, and mailing address;
- (2) property owner mine, wreprote, and mining solvers,
 (2) certification by either the signer of the landscape design plan, the

signer of the irrigation design plan, or the licensed landscape contractor that the landscape project has been installed per the approved Landscape Documentation Package:

(A) where there have been significant changes made in the field during construction, there "as-built" or record drawings shall be included with the carification:

(B) A diagram of the irrigation plan showing hydrozones shall be kept with the irrigation controller for subsequent management purposes.

(3) irrigation scheduling parameters used to set the controller (see Sec-

tion 492.10); (4) landscape and irrigation maintenance schedule (see Section 492.11);

(5) irrigation audit report (see Section 492.12); and

(S) Check valves or anti-drain valves are required on all sprinkler heads where low point drainage could occur.

(T) Areas less than ten (10) feet in width in any direction shall be irrigated with subsurface irrigation or other means that produces no runoff or oversony.

(U) Overhead irrigation shall not be permitted within 24 inches of any non-permeable surface. Allowable irrigation within the setback from non-permeable surfaces may include drip, drip line, or other low flow non-spray technology. The setback area may be planted or unplanted. The surfacing of the setback may be mulch, gravel, or other portous material. These restrictions may be modified if.

 the landscape area is adjacent to permeable surfacing and no runoff occurs; or

 the adjacent non-permeable surfaces are designed and constructed to drain entirely to landscaping; or

3. the irrigation designer specifies an alternative design or technology, as part of the Landscape Documentation Package and clearly demonstrates strict adherence to irrigation system design criteria in Section 492.7 (a)(1)(2). Prevention of overspray and runoff must be confirmed during the irrigation system.

(V) Slopes greater than 25% shall not be imigated with an imigation system with a application rate exceeding 0.75 inches per hour. This restriction may be modified if the landscape designer specifies an alternative design or technology, as part of the Landscape Documentation Package, and clearly demonstrates no runoff or erosion will occur. Prevention of runoff and erosion must be confirmed during the irrigation audit.

(2) Hydrozone

(Å) Each valve shall irrighte a hydrozone with similar site, slope, sun exposure, soil conditions, and plant materials with similar water use.

(B) Sprinkler heads and other emission devices shall be selected based on what is appropriate for the plant type within that hydrozone.

(C) Where feasible, trees shall be placed on separate valves from shrubs, groundcovers, and turf to faciliate the appropriate irrigation of trees. The mature size and extent of the root zone shall be considered when designing irrigation for the tree.

(D) Individual hydrozones that mix plants of moderate and low water use, or moderate and high water use, may be allowed if:

 plant factor calculation is based on the proportions of the respective plant water uses and their plant factor; or

 the plant factor of the higher water using plant is used for calculations.

(E) Individual hydrozones that mix high and low water use plants shall not be permitted.

(F) On the landscape design plan and irrigation design plan, hydrozone areas shall be designated by number, letter, or other designation. On the irrigation design plan, designate the areas irrigated by each valve, and assign a number to each valve. Use this valve number in the Hydrozone Information Table (see Appendix B Section A). This table can also assist with the irrigation audit and programming the controller.

(b) The irrigation design plan, at a minimum, shall contain:

location and size of separate water meters for landscape;
 location, type and size of all components of the irrigation system.

(a) Notation, type and size of an composition of the infigurou system, including controllers, main and lateral lines, valves, sprinkler heads, moisture sensing devices, rain switches, quick couplers, pressure regulators, and backflow prevention devices;

 static water pressure at the point of connection to the public water supply;

(4) flow rate (gallons per minute), application rate (inches per hour), and design operating pressure (pressure per square inch) for each station;

(5) recycled water irrigation systems as specified in Section 492.14;
(6) the following statement: Thave complied with the criteria of the ordinance and applied them accordingly for the efficient use of water in the irritation design plan" and

(7) the signature of a licensed landscape architect, certified irrigation designer, licensed landscape contractor, or any other person authorized

to design an irrigation system. (See Sections 5500.1, 5615, 5641, 5641, 56412, 56413, 56414, 56416, 56416, 56710, 7027 567 the Business and Professions Code, Section 832.27 of Title16 of the California Code of Regulations, and Section 6721 of the Food and Agricultural Code) North Anthony issued Section 5595, Government Code, and Sections 11 and 30, Government Code, and section 5595, Government Code, and Sections 11 and 30, Government Code, and section 11, Governor * Exec. Order No. B-29-51 (April Government Code, and section 11, Governor * Exec. Order No. B-29-51 (April 50, Section 20, S

HISTORY

 New section filed 9–10–2009; operative 9–10–2009 purvuant to Government Code section 11343.4 (Register 2009, No. 37).

 Amandmant of section and Norm filed 9-15-2015; operative 9-15-2015. Exampt from OAL review and submitted to OAL for printing only pursuant to Governor's Executive Order No. 8-29-15 (4-1-2015) (Register 2015, No. 38).

§ 492.8. Grading Design Plan.

(a) For the efficient use of water, grading of a project site shall be designed to minimize soil erosion, runoff, and water waste. A grading plan shall be submitted as part of the Landscape Documentation Package. A comprehensive grading plan prepared by a civil engineer for other local agency permits satisfies this requirement.

(1) The project applicant shall submit a landscape grading plan that indicates finished configurations and elevations of the landscape area including:

(A) grade so that all irrigation and normal rainfall remains within prop-

(B) avoid disruption of natural drainage patterns and undisturbed soil;

(3) The grading design plan shall contain the following statement: "I

have complied with the criteria of the ordinance and applied them accord-

ingly for the efficient use of water in the grading design plan" and shall

NOTE: Authority cited: Section 65595, Government Code, Reference: Section

HISTORY

 New section filed 9–10–2009; operative 9–10–2009 pursuant to Government Code section 11343.4 (Register 2009, No. 37).

(a) The Certificate of Completion (see Appendix C for a sample certif-

(2) certification by either the signer of the landscape design plan, the

(A) where there have been significant changes made in the field during

(B) A diagram of the irrigation plan showing hydrozones shall be kept

(3) irrigation scheduling parameters used to set the controller (see Sec-

(4) landscape and irrigation maintenance schedule (see Section)

signer of the irrigation design plan, or the licensed landscape contractor

that the landscape project has been installed per the approved Landscape

construction, these "as-built" or record drawings shall be included with

with the irrigation controller for subsequent management purposes.

(5) irrigation audit report (see Section 492.12); and

(C) project applicant name, telephone, and mailing address;

(E) property owner name, telephone, and mailing address;

bear the signature of a licensed professional as authorized by law.

(A) height of graded slopes;

- (B) drainage patterns;
- (C) pad elevations;

65596, Government Code.

(A) date:

(B) project name;

Documentation Package:

the certification:

tion 492.10):

402 11)·

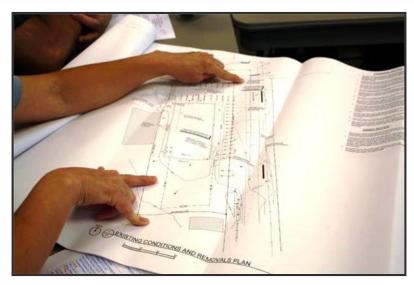
- (D) finish grade; and
 (E) stormwater retent
 (2) To prevent excessi that project applicants:
- (E) stormwater retention improvements, if applicable.
 (2) To prevent excessive erosion and runoff, it is highly recommended

erty lines and does not drain on to non-permeable hardscapes;

(C) avoid soil compaction in landscape areas.

§ 492.9. Certificate of Completion.

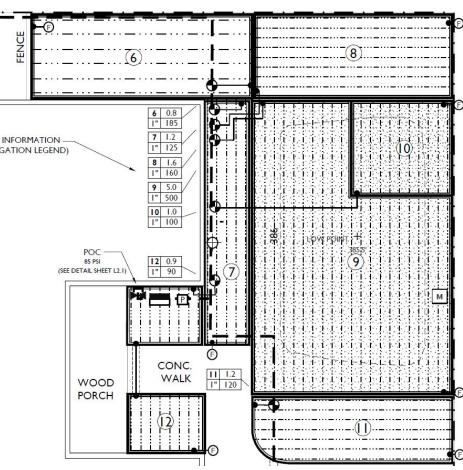
(D) project address and location; and


icate) shall include the following six (6) elements:

project information sheet that contains:

EBMUD Plan review

- EBMUD regulations mirrors the State of California's WELO.
 - Works with EBMUD New Business Office to confirm Indoor and Outdoor efficiency standards are being met.
- · Random site visits.
 - Primarily to identify the irrigated area of sites with multiple meters.



Landscape Plan Review

Irrigation Plan Basics

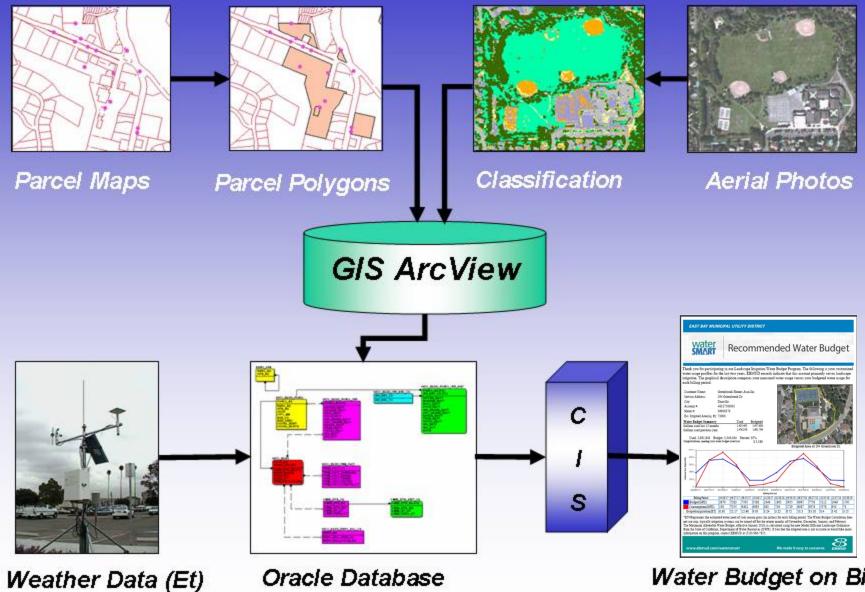
- Valve/Zone numbers and flow rates
- Zone boundaries and areas
- Include emitter flow rates, number per zone and/or spacing
- Mainline and lateral lines
- Point of connection components
- Legend with make and model # of each component

Landscape Plan Review

Water Budget Worksheet

Irrigation information

Controller ID	Associated Meter(s)	*
С	10471-B - Plan 4 10471-C - Plans 2 and 3	
	10471-D - Irrigation	
	10471-A - Plan 1	


Zone/Valve #	Flow Rate (GPM)	Planting Description	Hydrozone Type	Irrigation Method	Area (Square Feet)	
1	1.0	Trees	Low water use plants: 🔽	Point Source [60	D
2	20.0	Shrubs	Low water use plants: 💟	Point Source [1386	Đ
3	20.0	Shrubs	Special Landscape Are	In-Line Drip: 1	1560	a

Annual Water Budget (ETWU and MAWA)

			EBMUD	- Water Effic	cient Lan	dscape Wor	ksheet								
	The purpose of this worksh		a project's Estimated Total Water U worksheet is to be filled out by the p						andscape Ordinance (MWELO).						
Prope	erty Address:	175 Gil Blas Rd., Di	anville, 94526	NOTE	s										
	ence Site MWELO Appendix A):	-	Walnut Creek	10 This is the reference evapotranspiration rate and represents the water needs of grass at a given location. It is an estimate of the inches of water lost due to evapotranspiration from a field of cool-season grass that is well watered. (To values can be derived from MMELO Appendix A for locations across the State of California.											
	al ETo rence Evapotranspiration Ra		46.2 Inches) of 45% for new non-nesident the amount of water allowed p		w residential landscapes and 65% for						
	(ET Adjustment Factor) indscape Areas:	_	55.0 %						grammed recreational areas (e.g. public ater treatment facilities that are required						
ETAF	for Special Landscape Area	K:	100%	by permit	(e.g. bio-netention	basins, bio-swales, and fi	ow-through planters).								
	ESTIMATED TO	TAL WATER USE (ETWU) = (EFo) x (APF) x (Area) x (0.62)	where 0.62 is the coefficie	et that converts inc	thes to gallons per square	Foot		MAXIMUM APPLIED WATER						
	PLANTING DESCRIPTION Eg Medum Trees, Groundcove, Water Feature, etc.	(PF)	IRRIGATION EFFICIENCY (IE) Percent of applied water that reaches its target (e.g. root core or water feature) by impation method	ADJUSTED PLANT FACTOR (APF) ((F/R) = AF Wittening requirements adjusted for impation efficiency as a % of ETo	HYDROZONE AREA (AREA) Square Feet	CONVERSION FACTOR The coefficient that converts inches to gallons per square foot	ETWU PER HYDROZONE (UTo(APF)(Aros)(DA2) = Annual galloss regared to lengute this landscape		ALLOWA NCE (MAWA) MVIMA represents the annual water budget for this landscape. It is the maximum ansure of water allowed per year for imgation						
Land	scape Areas (LA)								LA						
1	Shrubs	30%	90%	33%	450	0.62	4241		(ETo)(ETAF)(Total Area)(0.62) = Annual gallo						
4	Forbs	30%	90%	33%	675	0.62	6361		allowed						
5	Trees	50%	90%	56%	90	0.62	1445								
6	Shrubs	20%	90%	22%	185	0.62	1170								
7	Shrubs	30%	90%	33%	125	0.62	1178								
8	Shrubs	30%	90%	33%	160	0.62	1508								
9	Grasses and Strap-leafed Plants	60%	90%	67%	500	0.62	9610								
10	Trees	60%	90%	67%	100	0.62	1922								
11	Shrubs	30%	90%	33%	120	0.62	1131								
12	Trees	50%	90%	56%	90	0.62	1445								
13 14	Shrubs	30%	90%	33%	245	0.62	2309 2213								
15	Water Feature	100%	100%	100%	35	0.62	1003								
	11000 1 00010	1.44 PT	aw/70	Totals	3125	0.62	35536	MAWA for LA:	49213						
Spec	ial Landscape Areas	(SLA)						-2011/2011/07/20	SLA						
2	Trees	No. No. Contraction		100%	560	0.62	16041		(ETo)(ETAF)(Total Area)(0.62) =						
3	Forbs			100%	125	0.62	3581		Annual galions allowed						
	0.000			Totals:	685	0.62	19622	MAWA for SLA:	19621						
	Controller Control	ller A				ETWU Grand Total:		MAWA Grand Total:	68834						
	Very low; 10-30% = Low; 40-60%		5; = Hgh. Water Requirements cited in this assification of Landscze Species34.	Spray	= 70%; Rotating (DDS AND EFFICIEN Nazzle = 75%; Bubblers -	Pass	: Yes							
	(uci	er etu/sites/WUCOLS/	k	Point-source	e drig = 85%; In-la	ne drip = 90%; Water foi	ture = 100%	ETWU	shall not exceed MAWA						

Water Budget Process

Oracle Database

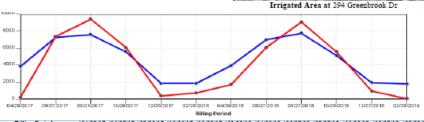
Water Budget on Bill

EBMUD Water Budget Report Getting information to the customer

- Informs customers on how efficiently water is being used in the landscape.
- Uses irrigated area and local weather.
- ETAF's of 1.0, .80, .70, .65, .55, and .45%

EAST BAY MUNICIPAL UTILITY DISTRICT

water


Recommended Water Budget

Thank you for participating in our Landscape Irrigation Water Budget Program. The following is your customized water usage profiles for the last two years. EBMUD records indicate that this account primarily serves landscape irrigation. The graphical description compares your measured water usage versus your budgeted water usage for each billing period.

Used	Budgeted
1,405,492	1,657,688
1,456,356	1,691,796
	1,405,492

Used: 2,861,848 Budget: 3,349,484 Percent: 85% Congratulations, meeting your water budget saved you \$3,189

Billing Period	04/28/17	06/27/17	08/25/17	10/26/17	12/28/17	02/28/18	04/30/18	06/27/18	08/27/18	10/25/18	12/27/18	02/28/19
Budget(GPD)	3870	7283	7595	5588	1846	1865	3955	6995	7758	5112	1949	1795
Consumption(GPD)	190	7355	9432	6093	380	736	1729	6087	9074	5578	950	71
Evapotranspiration(ET)	6.36	12.17	12.48	9.65	3.24	3.22	6.72	11.3	13.18	8.4	3.42	3.15

*ET=Represents the estimated water need of cool season grass (in inches) for each billing period. The Water Budget Calculation does not use rain, typically irrigation systems can be turned off for the winter months of November, December, January, and February. The Maximum Allowable Water Budget, effective January 2010, is calculated using the new Model Efficient Landscape Ordinance from the State of California, Department of Water Resources (DWR). If you feel the irrigated area is not accurate or would like more information on this program, contact EBMUD at (510) 986-7615.

www.ebmud.com/watersmart

We make it easy to conserve.

Post 2010 WELO – Type Landscapes. *Big Changes...*

ЕВМИД


- DWR Model Water Efficient Landscape Ordinance (2015).
 - 490 Purpose
 - (b) (4) "Use water efficiently without waste by setting a Maximum Applied Water Allowance as an upper limit for water use and reduce water use to the lowest practical amount".

New commercial landscapes guarantee water savings...

- Dave ruins everything...
- So far, very few seem to be using water efficiently in the new post 2010 commercial landscpapes

Tracked WELO Landscapes

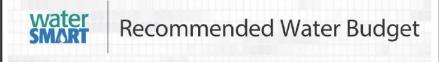
- Reviewed 86 Commercial Water Budget (irrigation only metered) properties
 - 2018, All billing periods
 - Evaluated *actual* consumption versus *budget*.
 - Plant material had at least 2 years of establishment

Consumption 184% of Budgeted amount for 523 total budgets

- Budget based on <u>80% of ET</u> for pre 2010 customers.
- Budget adjusted to 70% of ET post 2010
- Budget adjusted to <u>45% of ET post</u> 2016
- In 2016-2017 consumption
 204% of budgeted amount

Tracked WELO Landscapes

- When reviewing these same 86 customers
 - Irrigation Season only April – November 2016/17
- Consumption 203% of Budgeted amounts.
- 506 Total Budgets.
 - 357 Budgets (70%) where consumption exceeded budget.



WELO Water Budget Customer

EAST BAY MUNICIPAL UTILITY DISTRICT

Thank you for participating in our Landscape Irrigation Water Budget Program. The following is your customized water usage profiles for the last two years. EBMUD records indicate that this account primarily serves landscape irrigation. The graphical description compares your measured water usage versus your budgeted water usage for each billing period.

not use rain, typically irrigation systems can be turned off for the winter months of November, December, January, and February. The Maximum Allowable Water Budget, effective January 2010, is calculated using the new Model Efficient Landscape Ordinance from the State of California, Department of Water Resources (DWR). If you feel the irrigated area is not accurate or would like more

- Over a two year period potential cost savings - over \$19,000
- Consumption almost 700% of recommended budget over a two year period.
- Peak consumption would meet the water needs of two acres of grass in the Oakland area.
- More water being applied "after" peak July billing period.
- Audit noted MV, Flow Sensor, and weather sensor for SMART controller not being used.

Where's the Water Waste?

- Common scenario:
 - Stuck open drip irrigation valve.
 - No one can see water in planter.
 - Drip "indicator flag" hard to see.
 - Drip not for everybody...
 - No one checks "irrigation only" meter for movement.

Drip Irrigation is not for everybody

- Water applied at different rates.
 - Flow rates differ in gallons/hour.
 - Drip line spacing.
 - Drip "Emitter" spacing.
- Soil types

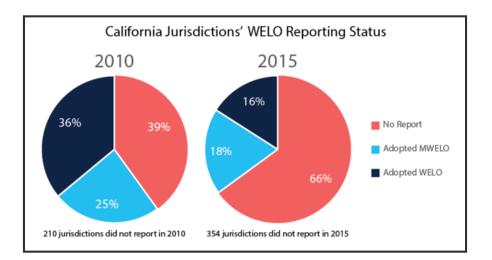
Ahh...nevermind

Irrigation Scheduling

- As the season changes
- Base irrigation schedule
- Adjust number minutes/days
- % Water Budget
- SMART, ET Controllers

Landscape Design - Possible Liabilities??

Bio Swales Are A Challenge



- MWELO and bio-swales are at odds in design
- Made to filter water and do it quickly, almost never overhead spray, drip dominates, water quickly passes through the soil

Implementation Barriers

- Who locally implements WELO?
 - "Local Agency" means a City/County that is responsible for adopting and implementing the ordinance.
 - Staffing, training, reporting

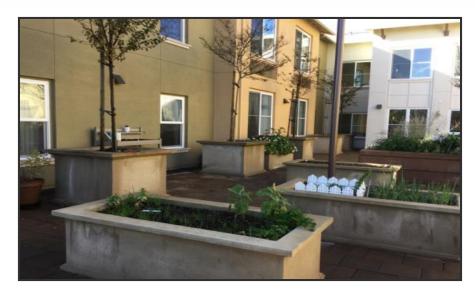
Paths Forward WELO .45/.55 ETAF Realistic?

				в	od	y M	as	s Ir	nde	x (вМ	I) C	ha	rt f	or /	Adu	Ilts						
						•				`		' ,											
			Obes	e (>30))			Over	weigh	it (25-	30)			Norm	al (18	.5-25)			Unde	erweig	ht (<1	8.5)	
	HEIGHT in feet/inches and centimeters																						
WEI	GHT	4'8"	4'9"	4'10"	4'11"	5'0"	5'1"	5'2"	5'3"	5'4"	5'5"	5'6"	5'7"	5'8"	5'9"	5'10"	5'11"	6'0"	6'1"	6'2"	6"3"	6'4"	6'5"
lbs	(kg)	142cr	n	147	150	152	155	157	160	163	165	168	170	173	175	178	180	183	185	188	191	193	196
	(117.9)	58	56	54	53	51	49	48	46	45	43	42	41	40	38	37	36	35	34	33	32	32	31
255	(115.7)	57	55	53	51	50	48	47	45	44	42	41	40	39	38	37	36	35	34	33	32	31	30
	(113.4)	56	54	52	50	49	47	46	44	43	42	40	39	38	37	36	35	34	33	32	31	30	30
245 240	(111.1)	55 54	53	51	49	48	46	45	43	42	41	40	38 38	37	36	35	34	33	32 32	31	31 30	30	29
240	(108.9) (106.6)	54	52 51	50 49	48 47	47 46	45 44	44	43 42	41 40	40 39	39 38	38	36 36	35 35	34 34	33 33	33 32	31	31 30	29	29 29	28 28
230	(108.8)	52	50	49	46	40	43	42	41	39	38	37	36	35	34	33	32	31	30	30	29	29	20
225	(104.5)	50	49	47	45	44	43	41	40	39	37	36	35	34	33	32	31	31	30	29	28	27	27
220	(99.8)	49	48	46	44	43	42	40	39	38	37	36	34	33	32	32	31	30	29	28	27	27	26
215	(97.5)	48	47	45	43	42	41	39	38	37	36	35	34	33	32	31	30	29	28	28	27	26	25
210	(95.3)	47	45	44	42	41	40	38	37	36	35	34	33	32	31	30	29	28	28	27	26	26	25
205	(93.0)	46	44	43	41	40	39	37	36	35	34	33	32	31	30	29	29	28	27	26	26	25	24
200	(90.7)	45	43	42	40	39	38	37	35	34	33	32	31	30	30	29	28	27	26	26	25	24	24
195	(88.5)	44	42	41	39	38	37	36	35	33	32	31	31	30	29	28	27	26	26	25	24	24	23
190	(86.2)	43	41	40	38	37	36	35	34	33	32	31	30	29	28	27	26	26	25	24	24	23	23
185	(83.9)	41	40	39	37	36	35	34	33	32	31	30	29	28	27	27	26	25	24	24	23	23	22
180	(81.6)	40	39	38	36	35	34	33	32	31	30	29	28	27	27	26	25	24	24	23	22	22	21
175	(79.4)	39	38	37	35	34	33	32	31	30	29	28	27	27	26	25	24	24	23	22	22	21	21
170	(77.1)	38	37	36	34	33	32	31	30	29	28	27	27	26	25	24	24	23	22	22	21	21	20
165	(74.8)	37	36	34	33	32	31	30	29	28	27	27	26	25	24	24	23	22	22	21	21	20	20
160 155	(72.6)	36 35	35 34	33 32	32 31	31 30	30 29	29 28	28 27	27 27	27 26	26 25	25 24	24 24	24 23	23 22	22 22	22 21	21 20	21 20	20 19	19 19	19 18
155 150	(70.3) (68.0)	34	32	31	30 30	29	29 28	20	27	26	20	25	24	24	23	22	22	21	20	19	19	19	18
145	(65.8)	33	31	30	29	28	27	27	26	25	24	23	23	22	21	21	20	20	19	19	18	18	17
140	(63.5)	31	30	29	28	27	26	26	25	24	23	23	22	21	21	20	20	19	18	18	17	17	17
135	(61.2)	30	29	28	27	26	26	25	24	23	22	22	21	21	20	19	19	18	18	17	17	16	16
130	(59.0)	29	28	27	26	25	25	24	23	22	22	21	20	20	19	19	18	18	17	17	16	16	15
125	(56.7)	28	27	26	25	24	24	23	22	21	21	20	20	19	18	18	17	17	16	16	16	15	15
120	(54.4)	27	26	25	24	23	23	22	21	21	20	19	19	18	18	17	17	16	16	15	15	15	14
115	(52.2)	26	25	24	23	22	22	21	20	20	19	19	18	17	17	16	16	16	15	15	14	14	14
110	(49.9)	25	24	23	22	21	21	20	19	19	18	18	17	17	16	16	15	15	15	14	14	13	13
105	(47.6)	24	23	22	21	21	20	19	19	18	17	17	16	16	16	15	15	14	14	13	13	13	12
100	(45.4)	22	22	21	20	20	19	18	18	17	17	16	16	15	15	14	14	14	13	13	12	12	12
95	(43.1)	21	21	20	19	19	18	17	17	16	16	15	15	14	14	14	13	13	13	12	12	12	11
90	(40.8)	20	19	19	18	18	17	16	16	15	15	15	14	14	13	13	13	12	12	12	11	11	11
85	(38.6)	19	18	18	17	17	16	16	15	15	14	14	13	13	13	12	12	12	11	11	11	10	10
80	(36.3)	18	17	17	16	16	15	15	14	14	13	13	13	12	12	11 	11	11	11	10	10	10	9
	MI values ro vertex42 co									-													
	ww.vertex42.com BMI = Weight[kg] / (Height[m] x Height[m]) = 703 x Weight[lb] / (Height[in] x Height[in]) © 2009 Vertex42 LLC																						

Monthly Base Schedule and Water Budget

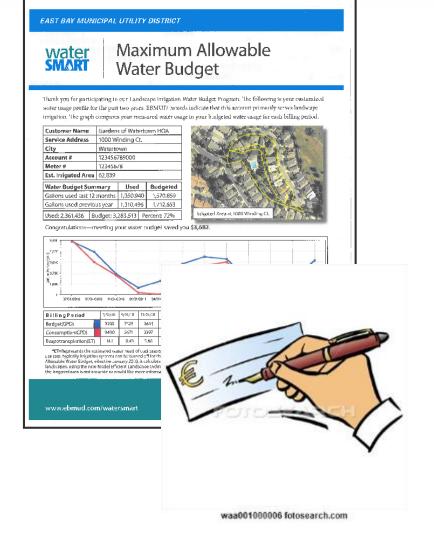
Monthly In	rigation Schedule for the Estimated Water Use Controller Controller A	Monthly ETO Values:		Feb	Mar	Apr	Мау	Jun)ul	Aug	Sep	Oct	Nov	Dec	Tota Annu
			0.8	1.5	2.9	44	5.6	6.7	7.4	6,4	4.7	3.3	1.5	1.0	46.2
ZONE/ VALVE #	FLOW RATE Sum of all emitters in a zone in gallons per minute (GPH)	AVERAGE PRECIPITATION RATE (IN/HR) (IR x 60 Min per Hr)(Area in 57/16 in per 97)				м	Monthly Run Time in Minutes								
Landscape Are	as														
1	2.0	0.43	37	69	133	202	257	308	340	294	216	152	69	46	2121
4	6.7	0.961	16	31	60	90	115	138	152	131	97	68	31	21	949
5	0.9	0.968	28	52	101	153	195	233	257	222	163	115	52	35	1605
6	0.8	0.418	25	48	92	139	177	212	234	203	149	105	48	32	1464
7	1.2	0.929	17	32	62	94	119	142	157	136	100	70	32	21	982
8	1.6	0.968	16	31	59	90	114	137	151	130	96	67	31	20	942
9	5.0	0.968	33	62	121	183	233	279	308	266	195	137	62	42	1921
10	1.0	0.968	33	62	121	183	233	279	308	266	195	137	62	42	1921
11	1.2	0.968	16	31	59	90	114	137	151	130	96	67	31	20	942
12	0.9	0.968	28	52	101	153	195	233	257	222	163	115	52	35	1605
13	2.4	0.948	17	31	60	92	117	140	154	133	98	69	31	21	962
14	1.5	0.415	26	48	93	140	179	214	236	204	150	105	48	32	1475
15	5.0	13.825	3	7	13	19	24	29	32	28	20	14	7	4	201
Special Landso	ape Areas														
2	2.5	0.432	111	208	403	611	778	931	1028	889	653	458	208	139	6417
3	3.0	2.323						173		165	121	85	39	26	1193
	THE REPORT OF A DESCRIPTION OF A DESCRIP	et for the Maximum Applied Water All					1.474								
Landscape Are															
currescupe rite		Inches applied per month	0.4	0.8	1.6	2.4	3.1	3.7	41	3.5	2.6	1.8	0.8	0.6	25.4
		Gallons per month			dealer George			7137	-				1598	and the second second	4921
													53.3		1764
Special Landso	ane Areas	Allo alle Amoris ho goà	61.2	37.13	77.0			2.31.7	2.75.3	213.3	100.7				
special callose	ape Areas	the second s	0.0	1.0	3.0			1.7	24					10	1.45.0
		Inches applied per month						6.7			Contractor (see		1.5		46.2
		Gallons per month											637		196Z
All I and store of	A second	Average gallons per day	11.0	11.8	39.7	02.3	/0./	94.5	101.4	67.7	00.5	10,2	23-2	13.7	
All Landscape	Areas														
		Total Gallons per month	1192	2235	4321	6556	8343	9982	11026	9535	7003	4917	2235	1490	6883

Does the "End User" Know the Equipment?



Where's the waste?

- This is what 10,000
 GPD can look like –
 two sites
- P1. Drip irrigation or bubbler Valves "stick" or are manually opened
- P2. Overhead spray sprinklers "stuck" valve easy to see



Barriers... Information

- \cdot Who's paying the bill
- Many commercial properties use third parties to pay the bills
- Often times no connection between who receives the bill and who manages the site

- Overhead spray in areas less that 10 feet wide
- Is the 24 inch setback to much with high efficient nozzles
- Have the sites inspected to review it was commissioned correctly
- Simplify the regulations
- Keep in mind who's managing these landscapes
- ...bio-swales...

Review of Customers

CUSTOMER	2018 % of Consumption vs. Budget
Cal-Trans	38%
Hospitals	87%
Cemetery	71%
BART	15%
Schools	71%
Counties	78%
RW-DERWA	64%
RW- East Bayshore	85%

CUSTOMER	2018 % of Consumption vs. Budget
Business	106%
Shop Center	150%
Hotels	183%
Senior Facilities	127%
Lawn Strips	148%
WELO	184%

- Customers ultimately responsible for how efficiently water is being used in the landscape
- It may take years; but input from all sectors will need to be consulted
 - maintenance professions, customers, architects, cities, manufactures, etc.
- Audits and Training

THANK YOU!

East Bay Municipal Utility District Water Conservation Division 375 11th Street, Oakland CA 510-287-1900

http://www.ebmud.com/ Charles.bohlig@ebmud.com

