This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Is Future Water Use Efficiency a Significant Demand Influence Given Forecast Uncertainty? John Clayton, Jack Kiefer, Lisa Krentz Hazen and Sawyer

Dave Bracciano Solomon Erkyihun, Tirusew Asefa Tampa Bay Water

Example: Tampa Bay Water

- Wholesaler to 6 utilities in Tampa Bay Region
 - 7 Water Demand Planning Areas (WDPAs)
- Fastest growing water provider in state
 - 2.5 million people
 - Approx. 250 MGD demand
 - Demands susceptible to swings in economy and strong seasonal climate variation

Demand Forecasting at Tampa Bay Water

Since 2002

- Per-unit models: econometric regressions
- Annual updates with new observations and projections
- Probabilistic forecasts every few years
 - Distributions of predictors at future times

Model Development: Sectoral Rate of Use Times Drivers

- Determine past number of water using entities (drivers)
 - SF and MF: number of dwelling units
 - NR: developed square footage in thousands (ksf)
- Determine past demand per driver (demand intensity)
 - SF and MF: gallons per housing unit per day
 - NR: gallons per ksf per day

Model Development: Sectoral Rate of Use Times Drivers

- Intensity models: historical intensity regressed against explanatory variables
 - Income, Price of water
 - Housing density, PPH
 - Reclaimed service penetration
 - End use efficiency
 - Weather assumptions

"Point" Forecast

- Input projection time series for each WDPA
 - \rightarrow Projected explanatory variables
 - \rightarrow Intensity models
 - \rightarrow Forecasted sectoral intensities for each WDPA
 - \rightarrow Multiply by projected driver variables
 - \rightarrow Forecasted sectoral demands for each WDPA
- "Point": one demand value for each future year, WDPA, sector

Point Projection Examples

Number of SF Households and Median Income for Each WDPA

Efficiency Factor

Simplified End-Use Model to Project Passive Efficiency Effects

- Stock model for toilets by gpf levels
 - Simulate # of 5.0, 3.5, 1.6, 1.28 gpf toilets from past into future
 - Add/replace certain % of existing toilets each year at standard gpf level for year

- Determine average gpf and index to a single year e.g. gpf(y) / gpf(2014)
- Use factors as X values during regression

Toilet-based factors as proxy for all efficiency

Efficiency Factor Point Projections by WDPA and Sector

Efficiency Factor is a Significant Predictor

• Elasticities

Hazen

• SF: 0.35 (p = 0)

Table 3-2: Single-Family Model

Dependent Variable: ln(q _{SF,m,y,g})		Method: Panel Least Squares Date: 07/11/18 Time: 15:28			
Periods included: 141 C		cross-sections included: 566 Total panel (unbalanced) observations: 7632			
Effects Specification: Month fixed		mple: 2001M10 2013M09 IF SI	F_GPUD>25 AND UNIT	S_SFAM>29 AND	
(shown), Cross-section fixed (not		RRICANE=0 AND HURRICAN	IE2*PAS=0 AND COT*E	3AN=0 AND SFK>0	
shown)					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
Intercept	2.814422	0.619799	4.540861	0	
$ln(INC_{m,y,g})$	0.279786	0.055439	5.046747	0	
$\ln(RMP_{m,y,g})$	-0.33135	0.044889	-7.38143	0	
$\ln(PPH_{SF,m,y,g})$	0.36065	0.0577	6.2504	0	
$\ln(DEN_{SF,m,y,g})$	-0.12691	0.016815	-7.54739	0	
$RECL_{SF,m,y,g}$	-0.39061	0.026821	-14.5635	0	
$\ln(EFF_{SF,m,y,g})$	0.349646	0.062689	5.57748	0	
δ_{Ian}	-0.02373	0.007981	-2.9733	0.0029	
δ_{Feb}	-0.01368	0.009876	-1.38551	0.1659	
δ_{Mar}	0.038455	0.010807	3.558523	0.0004	
δ_{Apr}	0.135433	0.011408	11.87127	0	
δ_{May}	0.178004	0.011843	15.03053	0	
δ_{Jun}	0.086731	0.011951	7.25707	0	
δ _{Iul}	-0.01559	0.011718	-1.33003	0.1835	
δ_{Aug}	-0.03328	0.011594	-2.87063	0.0041	
δ _{Sep}	-0.01772	0.011179	-1.58551	0.1129	
Soct	0.025505	0.01004	2.540248	0.0111	
δ _{Nov}	0.031506	0.007951	3.962319	0.0001	
$dMAXT_{m,y,g}$	0.212444	0.06484	3.276423	0.0011	
dMAXT _{m1,y1,g}	0.218619	0.065303	3.347789	0.0008	
dMAXT _{m2.y2,g}	0.13272	0.062627	2.119207	0.0341	
dPRCP _{m,y,g}	-0.02456	0.002302	-10.6711	0	
dPRCP _{m1,y1,g}	-0.01811	0.002613	-6.93177	0	
dPRCP _{m2,y2,g}	-0.00419	0.002303	-1.8192	0.0689	
φ	0.563281	0.011514	48.92306	0	

Effects Specification: Cross-section fixed (dummy variables)

R-squared	0.907431	Mean dependent var	5.325801
Adjusted R-squared	0.906712	S.D. dependent var	0.356105
S.E. of regression	0.108766	Akaike info criterion	-1.59154
Sum squared resid	895.9545	Schwarz criterion	-1.5201
Log likelihood	61328.03	Hannan-Quinn criter.	-1.56959
F-statistic	1260.485	Durbin-Watson stat	1.598854
Prob(F-statistic)	0	Inverted AR Roots	0.56

Efficiency Factor is a Significant Predictor

- Elasticities
 - SF: 0.35 (p = 0)
 - MF: 0.20 (p = 0)

Table 3-3: Multifamily Model

Dependent Variable: In(Method: Panel Least Squares Date: 07/11/18 Time: 15:31					15:31		
Periods included: 141 Cro		Cross-	oss-sections included: 407 Total panel (unbalanced) observa			ed) observations: 48704		
Effects Specification: Month fixed Sa			Sample: 2001M10 2013M09 IF MF_GPUD>25 AND PID_TOTAL ME>2 AND					
(shown). Cross-section fixed (not		COT*E	AN=0 AND H	URRICANE=	0 AND HURRICAN	NE2*PA	S=0	
shown)								
Variable	Coefficier	nt	Std.	Error	t-Statistic		Prob.	
Intercept	4.572712		0.45	5831	9.977338		0	
$ln(INC_{m,y,g})$	0.074048		0.03	9776	1.861612		0.0627	
$ln(RMP_{m,y,g})$	-0.183221		0.03	9907	-4.591195		0	
$ln(DEN_{MF,m,y,q})$	-0.106424	1	0.01	3996	-7.603786		0	
$\ln(EFF_{MF,m,y,g})$	0.203825		0.04	5988	4.432108		0	
δ _{Ian}	0.009893		0.00	5429	1.82227		0.0684	
δ _{Feb}	0.018756	i	0.00	6643	2.823654		0.0047	
δ_{Mar}	0.02626		0.00)731	3.592104		0.0003	
δ _{Apr}	0.034297		0.007739		4.431637		0	
δ _{May}	0.031516		0.008047		3.916633		0.0001	
δ _{Jun}	0.011118		0.007921		1.403617		0.1604	
δ _{Jul}	-0.00336		0.007845		-0.428255		0.6685	
δ_{Aug}	-0.005582		0.007773		-0.718181		0.4726	
δ_{Sep}	-0.018143	3	0.007554		-2.401862		0.0163	
δ _{oct}	-0.009925	5	0.006756		-1.469112		0.1418	
δ _{Nov}	-0.004585	5	0.005327		-0.860719		0.3894	
$dMAXT_{m,y,g}$	0.031377		0.04	3703	0.717975		0.4728	
$dMAXT_{m1,y1,g}$	0.066076		0.04	2541	1.553256		0.1204	
dPRCP _{m,y,g}	-0.006244	1	0.00	1543	-4.045667		0.0001	
dPRCP _{m1,y1,g}	-0.002885	5	0.00	1552	-1.859113		0.063	
φ	0.574551		0.008928		64.35672		0	
R-squared 0.833902			Mean depe		ndent var 4.73		196	
Adjusted R-squared	0.832436			S.D. depender		0.408)8044	
S.E. of regression	0.167031	/031		Akaike info criterion		-0.732547		
Sum squared resid	1346.896	196		Schwarz criterion		-0.655452		
Log likelihood	18265.98	.98		Hannan-Quinn criter.		-0.708368		
F-statistic	568.9584			Durbin-Watson stat		1.716229		
Prob(F-statistic)	0			Inverted AR	Roots	0.57		

Efficiency Factor is a Significant Predictor

- Elasticities
 - SF: 0.35 (p = 0)
 - MF: 0.20 (p = 0)
 - NR: 0.30 (p = 0)

Table	3-4:	Nonresidential	Mode
	100 100 1		

Dependent Variable: In(a	(mmmmm) M	lethod: Panel Leas	st Squares Date: 07/11/18 Time: 15:41			5:41	
Periods included: 141 Cross-sections inclu		uded: 598	Total panel (unbalanced) observations: 80251				
Effects Specification: Mor	ample: 2001M10 2	le: 2001M10 2013M09 IF GPKSED>0 AND HURRICANE=0 AND					
(shown), Cross-section fit	URRICANE2*PAS	=0 AND CO	T*BAN=0 AND LAN	D_TO_B	UILD>1		
shown)							
Variable	Coefficient	Std.	Error	t-Statistic		Prob.	
Intercept	1.868465	0.73	9679	2.526048		0.0115	
$\ln(INC_{m,y,g})$	0.305654	0.0	617	4.619213		0	
$\ln(RMP_{m,y,g})$	-0.30873	0.05	9961	-5.14881		0	
RECL _{NR,m,y,g}	-0.45621	0.07	5847	-6.01489		0	
$\ln(EFF_{NR,m,y,g})$	0.300565	0.07	2236	4.160909		0	
SQFR _{EDUC,m,y,g}	-0.63858	0.0	3366	-18.9717		0	
SQFR _{GOVT,m,y,g}	-0.47841	0.07	1345	-6.7056		0	
SQFR _{HCAR,m,y,g}	0.163439	0.06	0703	2.692441		0.0071	
SQFR _{HMFG,m,y,q}	0.087706	0.1	6429	0.533848		0.5934	
SQFR _{HOTL,m,y,g}	0.711577	0.06	6937	10.63062		0	
SQFR _{LMFG,m,y,p}	-0.13417	0.07	6499	-1.75391		0.0795	
SQFR _{OFFC,m,y,q}	-0.24981	0.04	5792	-5.45533		0	
SQFR _{FOOD.m.v.a}	2.309579	0.10	2592	22.51224		0	
SQFR _{RETL.m.v.a}	-0.12994	0.02	8561	-4.54971		0	
SQFR _{BETB} m.y.a	0.378146	0.05	4798	6.900708		0	
δ _{Ian}	0.01534	0.00	6066	2.528845		0.0114	
δ _{Eeh}	0.048201	0.00	7674	6.280919		0	
δ _{Mar}	0.060785	0.00	8699	6.987341		0	
δ_{Anr}	0.082565	0.00	9365	8.816807		0	
δ_{May}	0.098664	0.00	9822	10.04564		0	
δ _{lun}	0.049379	0.00	9768 5.055241			0	
δ_{Inl}	0.014062	0.00	9664 1.455157			0.1456	
δ _{Aug}	0.027549	0.00	9419 2.924673			0.0034	
δ _{Sen}	0.040224	0.00	8942	4.498074		0	
Soct	0.051633	0.00	7701	6.704787		0	
δ _{Nov}	0.037068	0.00	5885	6.298583		0	
dMAXT _{m x a}	0.094306	0.04	9083	1.921377		0.0547	
dMAXT _{m1x1,a}	0.114894	0.04	7925	2.397362		0.0165	
dPRCP	-0.00954	0.00	1709	-5.57805		0	
dPRCP _{m1 x1 a}	-0.00659	0.00	1725	-3 81917		0 0001	
a miyiy	0 722715	0.00	10705 02 26226			0	
	0.122110	0.00	0.00	02.20223		v	
R-squared 0.865369			Mean depe		4.47942	.479423	
Adjusted R-squared	1 0.864309		S.D. dependent var		0.782385		
S.E. of regression	0.288201	0.288201		Akaike info criterion		0.357481	
Sum squared resid	6613.493	6613.493		Schwarz criterion)2	
Log likelihood	-13716.09		Hannan-Qu	uinn criter.	0.37977	7	
F-statistic	816.2578		Durbin-Wa	tson stat	2.17730)1	
Prob(F-statistic)	0	0 Inverted AR Roo			0.72		

Point Forecast (2014-2016 Base Period)

Demand Forecast Uncertainty

Nobody knows the future perfectly

Demand Forecast Uncertainty

Nobody knows the future perfectly

Demand Forecast Uncertainty

Nobody knows the future perfectly

Incorporating Uncertainty in Forecasts

- Determine ranges/scenarios/distributions of projected model inputs
 All1 NCEP GFS Guidance [
 Lost 48 Forecosts | Most r
- Produce multiple forecast outcomes and summarize range of possible demands
- Think "hurricane track forecasts", but with demand vs time

Tampa Bay Water Approaches

- Uncertainty incorporated in multiple aspects
 - Drivers population projection distributions provided externally
 - Explanatory variables uncertainty derived from historical variability
 - Model uncertainty derived from comparing historical model estimates with observations
- Monte Carlo approach
 - Sample input distributions and calculate demands repeatedly

Explanatory

Uncertainty Assumption Examples

Direct Third-Party Projections

- Population
 - Provided by Bureau of Economic and Business Research (BEBR): U. of Fla.
 - Use medium growth rate to point-project units and ksf
 - High/Medium/Low projections:
 "75% of outcomes"
 - Use all three to define population distributions, then corresponding units and ksf distributions
 - Sample during Monte Carlo

Uncertainty Assumption Examples

Historical Short-Term Variability Imposed on Point Projections

- Explanatory variables
 - Historical data: trend and annual departures
 - Pretend point projection is the future trend
 - Add historical short-term variations to future – sample during Monte Carlo

Uncertainty Assumption Examples

Model Noise

- Fitting set observations and estimates: residuals
 - Reflects parameter and specification uncertainty
 - Sample residuals during
 Monte Carlo

Probabilistic Forecast Ignoring Efficiency Factor (set to 1)

Probabilistic Forecast With Point-Projected Efficiency Factor

Impacts of Including Efficiency in Probabilistic Forecast

Entire forecast discernably lowered

- Median
 - 5.7 MGD (2.3%) lower in 2020
 - 20.7 MGD (7.1%) lower in 2045
- Stands out from forecast noise
 - Inclusion of efficiency moves the prior median demands to the 75th percentile

Probabilistic Forecast, MGD								
Efficiency Factor Omitted (set to 1)								
WaterYear	aterYear pctile_5 pctile_25 pctile_50 pctile_75 pctile_9							
2020	234.0	244.7	252.2	259.7	270.4			
2025	238.2	253.7	265.3	276.3	291.6			
2030	240.3	261.3	274.8	288.5	308.5			
2035	236.1	263.8	280.8	299.0	323.5			
2040	231.9	264.9	207.7	308.3	342.5			
2045	225.3	263.7	291.5	317.9	356.4			

Probabilistic Forecast, MGD

Efficiency Factor Included at Point Values

WaterYear	pctile_5	pctile_25	pctile_50	pctile_75	pctile_95
2020	228.4	239.0	246.5	253.7	263.9
2025	229.7	243.9	255.2	265.9	280.5
2030	228.0	248.0	260.8	273.8	293.1
2035	222.4	248.1	264.3	281.3	303.8
2040	216.9	247.5	268.8	287.2	319.7
2045	209.9	244.9	270.9	294.9	330.2

Conclusions

- Efficiency factor approach
 - Less data intensive than a full end use model
 - Focus on fixtures where data and assumptions are easiest to come by
 - Impacts of future efficiency on forecast are reasonable
- Even when considering the uncertainty inherent in a forecast, end use efficiency increases can produce significant demand impacts

Future Work

- Uncertainty in future end-use efficiency
 - Already began this as part of probabilistic forecast
 - Assumed wide range of future 1.6/1.28 efficiency standards
 - Produced ranges of efficiency factors
 - Not much additional uncertainty
- What about uncertainty in average lifetime?
 - Could be large contributor
 - Need statistical definitions (confidence intervals)

Efficiency Factor Uncertainty

Possibly the First Ever Probabilistic Treatment of Efficiency in Forecasting

- Parameters of stock model
 - Average toilet lifetime
 - Future 1.28 market presentation
- Uncertainty: 49 scenarios of penetration rates
 - Fastest: 78% 1.28 gpf by 2021
 - Slowest: 52% 1.28 gpf by 2039
- Did not vary average lifetime
 - Projection sensitivity

Hazen

Need for well-supported bounds

Efficiency Factor Uncertainty

Probabilistic Forecast (2014-2016 Base Period)

Largest Contributors to Uncertainty

- Population
 - 1:1 demand variation
- Balance between price and income
 - both strong controls on intensity
 - opposite directions of influence
- Intensity model uncertainty
- Details of how variables are correlated

Summary

- New Tampa Bay Water probabilistic approach
 - Incorporate uncertainty in drivers, explanatory variables, intensity model
 - Uncertainty leverages a variety of information
 - Novel uncertainty application for future efficiency
- Different uncertainty sources have different degrees of influence
 - Uncertainty treatment can be selective just where forecasts are most sensitive
- Additional work
 - Uncertainty treatment for more variables
 - Efficiency: expression of uncertainty for average fixture lifetime

Driver Uncertainty

- Population Projections from Bureau of Economic and Business Research (BEBR) at University of Florida
 - County-level
 - High, Medium, and Low Scenarios
 - Probabilistic: High-to-low represents 75% prediction interval
- Translate population distributions onto forecast drivers

Explanatory Uncertainty

- Historical, projected socioeconomic data from Moody's Analytics
 - Historical data show year-to-year variations around trends
 - Statistically describe variations, center them onto point projections

Model Uncertainty

- Plug historical driver and explanatory data into model
- Compare with historical demands
- Statistically describe residuals

