This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Granularity, Who Needs It: Understanding the Role of Data and Conservation Potential October 3rd, 2019 Robert Stefani

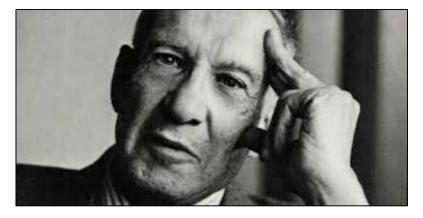
About Austin Water

Austin

- 100% surface water from Lower Colorado River
 - Firm water rights backed by stored water contract up to 325,000 acre-feet
 - Prepayment agreement up to 201,000 acre-feet
 - 2018 withdrawal ~ 149,000 acre-feet
- Large metropolitan utility
 - ~ 548 sq miles
 - ~ 223,000+ connections
 - ~ 3,807 miles of mains
 - ~ 1,000,000 customers
 - ~ 1,100 employees

What is Granularity

"The granularity of data refers to the size in which data fields are sub-divided."



Why is granularity important to demand management

"If you can not measure it, you can not manage it." -Peter Drucker

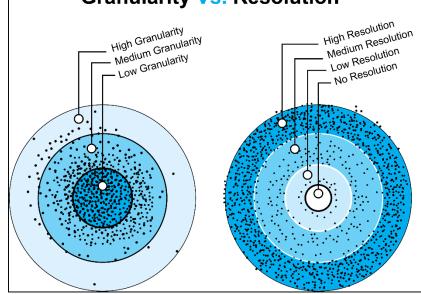
- Allows for advanced conservation techniques:
 - Disaggregation of end-uses
 - Premise Leak Detection
 - System Water Loss Analysis

- Stand alone Customer Engagement tool
- Data Stream to Customer Relationship Management (CRM) Platforms
- Precise quantification of program effectiveness

Evolution of Meter Technology

- No metering
- Coin Operated Meters
- Analog Meters
 - Positive displacement (PD)
 - Static
 - Ultra-Sonic
 - Turbine

- Digital Meters
 - Advanced Metering Infrastructure (AMI)
 - Automatic Meter Reading (AMR)
 - Positive displacement
 - Static
 - Ultra-Sonic
 - Turbine



Granularity and Resolution

- Granularity, also referred to as Resolution
- Granularity has in inverse relationship to Resolution
 - Low Granularity is the same as High Resolution
 Granularity Vs. Resolution
- Four levels of Resolution
 - No Resolution
 - Low Resolution
 - Medium Resolution
 - High Resolution

No Resolution

- Typically, no meter infrastructure
- No volumetric reads
- Allocation methodology
- Typically, no volumetric relation

<u>Advantages:</u>

- Low Overhead Cost
- No O&M Costs
- No Digital Infrastructure
- Simplified Billing Structure

Disadvantages:

- No volumetric detail
- No volumetric baselines
- No tiered volumetric rates
- Difficulty with quantifications
- Difficulty with end-user engagement
- No real time reporting
- No disaggregation

Low Resolution

- Typically, analog technology
- Reads: Quarterly, Monthly
- Typically, relates to volumetric consumption
- Records in gallons

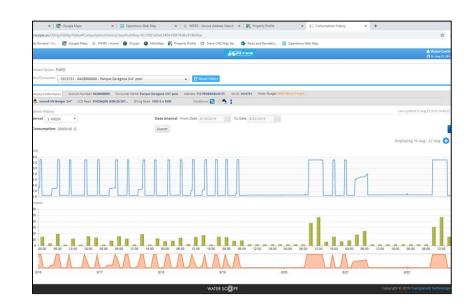
Advantages:

- Typical Overhead Cost
- Typical O&M Costs
- Industry Standard
- Large Selection of Vendors
- No Digital Infrastructure
- Tiered Volumetric Rates
- Low Level Disaggregation

Disadvantages:

- Low level disaggregation of use
- Difficulty with quantifications
- Low level of volumetric detail
- No real time reporting
- Customer issues difficult to address

SAMPLE DILL: I



Medium Resolution

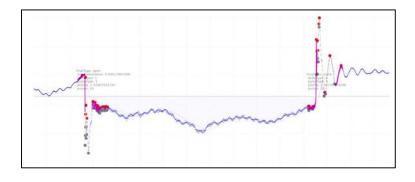
- Typically, digital technology
- Reads: weekly, daily, hourly,15 minute
- Records in gallons

Advantages:

- Real Time Reporting
- Real Time Alerts
- More Precise Quantifications
- Varying Levels of Granularity
- Medium Level of Volumetric Detail
- Ease of Customer Engagement

Disadvantages:

- High Overhead Costs
- High O&M Costs
- Staff Training Needed
- Network Outages



High Resolution

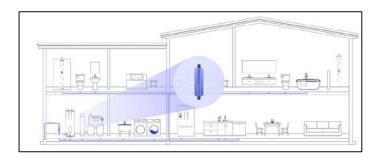
- Based in digital technology
- Minute or sub-minute resolution
- Records sub-gallon volume

Advantages:

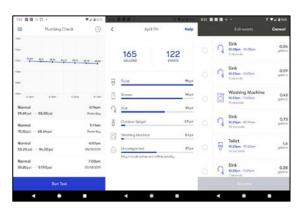
- Fixture based disaggregation
- Real Time Reporting
- Real Time Alerts
- Precise Quantifications
- Varying levels of granularity
- High level of volumetric detail
- Ease of customer engagement

Disadvantages:

- High Overhead Costs
- High O&M Costs
- Staff training needed
- Network Outages


Hardware

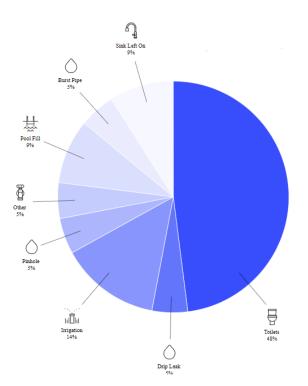
- Ancillary Attachable Devices
 - Data Logger
 - Sensor Based Device
 - Optical Reader
- In-line Devices
 - Analog Meter
 - Digital Meter
 - SCADA Type Systems
 - Flow Sensors
 - Stand Alone
 - Fixture Based
 - Irrigation Only
 - Whole House



Software Platforms

- Meter Vendor Supplied Platforms
 - Typically has administrative based applications
 - Platform typically provided with hardware
- Third Party Platforms
 - Typically has end-user focused and administrative applications
 - Competitive additional cost
 - Integration with existing data streams necessary
- In House Platforms
 - Typically has end-user focused and administrative applications
 - Variable additional cost
 - Integration with existing data streams necessary
- Custom Platforms
 - Typically has end-user focused and administrative applications
 - High additional cost
 - Integration with existing data streams necessary

													O
_	a schemation											A conception of	
-	Manage Tage And												
hine -		 (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	() termine ()) test (-		Search	Aunt	April .	· · · · · · · · · · · · · · · · · · ·	transies
										-			
0	a a lab e laris	in inte											4.0
÷	- Committee Same		19.2	1991	difficult (-	and free loss	Part Face from	And in	•	Conditions	
-	Former Stringson d'	Hardsonwidt M.	1019728		1010	-	and 64					•	n=.
-	Person Designed No.	112 112 112 112 11	- envelop	1	1010			8.43	10.00	-		08 4	0.7.
	to us to que l'u	SHE UP CALL IT	10221-04		104		an de		5.10	*******			0.*.
it.	And question of some	HISTORIAN	10100		29		140		- 64	10.05.75*0		0	6.*.
000	Dette (second plan	INPUPONA	1002768	0	100	10	Tisin .	649	142	10.15.2714		0 23 -	0.0
10	(marked)	1005-010771014-022	100071	1.	1400		alah sa l		1.00	49-23-2019	1.19	1211	0.7
000	manufact of past	2000/04/04/04/04	1083712			-	1.81.74		961	48-19-20-0			n=
110	Bellahoota Dil'a-	Stor & Billion DF	1082718			10	1-12	241	1.0	******		08/5	A *
405	Sector/Rel3 11	2008/10/012/02	1080714		147					48.23.2114			£ *
-	destinant of part	Approximation (10)	Internet			ж.	1016	441	10.00	-		00111	0.*
000	Second and	3811.8 1 (Hunde	(debadd)	4	nn.	-	- 1		+	16.71.2110		91	a =
001	Dottageneed?	3010203438	1106201	10	100		218.4		1001	10.1112-0		151	n =
201	lows 24 per	. ARTY # 127+127	110000	1			14	100		10108-0119			0.7
0	a a la a la a	tani sega											



The Future of Data Granularity

- Integration with CRM platforms
- Fixture Level Disaggregation
- Consumer Electronics
- Home Automation Packages
- Second Generation Smart Irrigation Controllers

Program opportunities

- Home Audit Kit
- Diagnostic Tool
- Leak Detection
- System Water Loss

- Meter Sizing
- Water Restrictions Enforcement
- Firm Quantifications
- Non-Potable Water Budgeting
- Customer Satisfaction

• Water Use Monitoring Rebates

Lessons Learned

- Due diligence required
- Consultant or Third Party guidance preferred
- Design system based on local need
- Future proof selected technology

- Look for overlap opportunities with energy provider
- Be innovative with network deployment
- Be careful with 1st generation technology


Next Steps for Granularity

- Open source fixture level disaggregated algorithms
- Roll up disaggregation algorithms
- Standardization of data streams
- Expansion of sensor technology
- Overlap with water quality monitoring

• Customer Relationship Management Platform integration

Questions? Robert Stefani

Environmental Program Coordinator (512) 974-9302 robert.stefani@austintexas.gov

