This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

MANNAN

Testing and Performance of Pressure Regulating Sprinkler Bodies

WaterSmart Innovations Oct. 3-6, 2017

Michael D. Dukes, PhD., P.E., C.I.D.

Agricultural & Biological Engineering

University of Florida/IFAS

lce.ifas.ufl.ed

Mannann

UF/IFAS Center for Landscape Conservation and Ecology

- Mission
 - To protect and conserve Florida's natural resources through research-based sustainable urban landscape practices.
- Vision
 - To be the leading source of science-based information on horticulture and the urban environment in Florida.

ASABE/ICC Sprinkler & Emitter Standard

Committee Composition

- Irrigation manufacturers
- Utilities
- Irrigation Association
- Irrigation contractors
- Researchers

ASABE/ICC 802-2014

Landscape Irrigation Sprinkler and Emitter Standard

American National Standard

Background

- ASABE/ICC Sprinkler & Emitter Standard
- Potential savings → flowrate reduction at elevated operating pressures

Theoretical Pressure Regulation Flowrate Reduction

UF FLORIDA

Pressure and Flowrate

12' SERIES WITH 24° TRAJECTORY (BROWN)

	Dees	1.00		Ra-	Prec. Rate		
AFC	Desc.	psi	gpm	dius			
		20	0.40	11	1.48	1.28	
009	12.0	30	0.50	12	1.55	1.35	
90	12-0	40	0.60	13	1.64	1.42	
		50	0.63	13	1.67	1.44	
-	12 0 00	30-40	0.48	12	1.49	1.29	
	12-4-PC	40-75	0.53	12	1.65	1.43	
	12-T	20	0.57	11	1.58	1.37	
1200		30	0.72	12	1.68	1.45	
120		40	0.87	13	1.87	1.62	
		50	0.97	13	1.93	1.67	
-	12 T DC	30-40	0.64	12	1.49	1.29	
	12-1-PC	40-75	0.70	12	1.63	1.41	
		20	0.95	11	1.76	1.52	
1009	12.11	30	1.09	12	1.69	1.47	
100	12-H	40	1.30	13	1.72	1.49	
		50	1.55	14	1.77	1.53	
	12 4 80	30-40	0.96	12	1.49	1.29	
	12-11-PC	40-75	1.05	12	1.63	1.41	

IFAS

									20	11	1.05	1.67	1.93	
	12 Series MPR						180°	н	25	12	1.18	1.58	1.83	
	30° Trajectory								30	12	1.30	1.74	2.01	
	50 majectory								35	13	1.42	1.61	1.86	
	Nozzle	Pressure	Radius	Flow	Precip	Precip			40	13	1.52	1.73	2.00	
		psi	ft.	gpm	ln/h	ln/h								
	12F	15	9	1.80	2.14	2.47								
		20	10	2.10	2.02	2.34								
		25	11	2.40	1.91	2.21								
		30	12	2.60	1.74	2.01								
	12H	15	9	0.90	2.14	2.47								
		20	10	1.05	2.02	2.34								
		25	11	1.20	1.91	2.21							2. 1	
		30	12	1.30	1.74	2.01								
	Man												21	
Center for														
UF FLORIDA LANDS	CAPE													

12 12' radius Fixed: ¼, ¼, ½, ⅔, ¾, Full Green Trajectory: 28°

Arc	Position	Pressure PSI	Radius ft.	Flow GPM	Precip	in/hr ▲
		20	11	0.54	1.71	1.98
90°	Q	25	12	0.61	1.62	1.87
	-	30	12	0.67	1.78	2.06
_		35	13	0.72	1.65	1.90
		40	13	0.78	1.77	2.04
		20	11	0.72	1.71	1.98
120°	Т	25	12	0.81	1.62	1.87
		30	12	0.89	1.78	2.06
		35	13	0.97	1.65	1.90
		40	13	1.04	1.77	2.04
		20	11	1.05	1.67	1.93
180°	н	25	12	1.18	1.58	1.83
		30	12	1.30	1.74	2.01
		35	13	1.42	1.61	1.86
		40	13	1.52	1.73	2.00

Pressure and Flowrate

12' SERIES WITH 24° TRAJECTORY (BROWN)

	Dees			Ra-	Prec. Rate		
ALC	Desc.	psi	gpm	dius			
		20	0.40	11	1.48	1.28	
000	12.0	30	0.50	12	1.55	1.35	
90	12-0	40	0.60	13	1.64	1.42	
		50	0.63	13	1.67	1.44	
-	12 0 00	30-40	0.48	12	1.49	1.29	
	12-Q-PC	40-75	0.53	12	1.65	1.43	
	12-T	20	0.57	11	1.58	1.37	
1200		30	0.72	12	1.68	1.45	
120		40	0.87	13	1.87	1.62	
		50	0.97	13	1.93	1.67	
-	12-T-PC	30-40	0.64	12	1.49	1.29	
		40-75	0.70	12	1.63	1.41	
		20	0.95	11	1.76	1.52	
1009	10.11	30	1.09	12	1.69	1.47	
180-	12-H	40	1.30	13	1.72	1.49	
		50	1.55	14	1.77	1.53	
_	12 H DC	30-40	0.96	12	1.49	1.29	
	12-11-20	40-75	1.05	12	1.63	1.41	

	12 Series MPR						1	180°	н	20 25	11 12	1.05 1.18	1.67 1.58	1.93 1.83	
	30° Trajectory Nozzle	Pressure	Radius	Flow	Precip	A Precip				30 35 40	12 13 13	1.10 1.42 1.52	1.58 1.74 1.61 1.73	2.01 1.86 2.00	
	12F	15 20 25 20	9 10 11	1.80 2.10 2.40	2.14 2.02 1.91	2.47 2.34 2.21									
	12H	15 20 25 30	9 10 11 12	0.90 1.05 1.20 1.30	2.14 2.02 1.91 1.74	2.01 2.47 2.34 2.21 2.01	1								
UF FLORIDA Center for			' ' '	1-1						* * ' * *					

12	12' radius Fixed: 14 16 16 26 36 Full
 Green 	Trajectory: 28°

Arc	Position	Pressure PSI	Radius ft.	Flow GPM	Precip	o in∕hr ▲
		20	11	0.54	1.71	1.98
90°	Q	25	12	0.61	1.62	1.87
	-	30	12	0.67	1.78	2.06
_		35	13	0.72	1.65	1.90
		40	13	0.78	1.77	2.04
		20	11	0.72	1.71	1.98
120°	Т	25	12	0.81	1.62	1.87
		30	12	0.89	1.78	2.06
		35	13	0.97	1.65	1.90
		40	13	1.04	1.77	2.04
		20	11	1.05	1.67	1.93
180°	н	25	12	1.18	1.58	1.83
		30	12	1.30	1.74	2.01
		35	13	1.42	1.61	1.86
		40	13	1.52	1.73	2.00

EPA Estimated Savings

- Avg. house using 50,500 gal/yr saves 5,600 gal/yr
- 2.3 yr ROI retrofit

UF FLORIDA

IFAS

• 1.5 yr ROI new install

Center for

Irrigation System Pressure Data, Utah State University and Center for Resource Conservation

Misting and Drift

Pressure Regulation

No Pressure Regulation

How Do They Work?

EPA WaterSense Initial Testing

- Three labs
- Outlet device
 - Standardized orifice in 802
 - Ball valve/gate valve
 - Variable arc nozzle
 - Needle valve
- Increasing pressure/decreasing pressure
 → hysteresis

Initial Testing Observed Hysteresis

Outline

- Test equipment
- Test process
- Modifications
- Results
- Recommendations

Test Equipment

Center for DSCAPE

Conservation & Ecology

Test equipment

UF FLORIDA

Center for LANDSCAPE Conservation & Ecology

Water Hammer Arrester

Booster Pump

Test Sample, pressure transducers, needle valve

Pressure Transducers

Adapter

Needle Valve

UF FLORIDA

Test Specimen

Test Process

- Verify flowrate at rated pressure (3 consecutive readings) 30 psi +/- 1 psi, 1.5 gpm +/- 0.1 gpm
- Reduce pressure to zero (for at least 1 min)
- Increase pressure to rated+10 psi (3-5 min test, 30 sec recording)
- Reduce pressure to zero
- Increase pressure to 60 psi
- Reduce pressure to zero
- Increase pressure to 70 psi

Repeat for 60 psi, rated+10 psi

Test Modifications

- All piping 1/2" SCH 40 PVC, not 3/4"
- First test point at regulated pressure to verify test conditions
- Accepted a 0.2 gpm deviation at 3.5 gpm test point

Models Tested

- 6 manufacturers
- 11 models tested, 3 samples each
- Brands A-C, PR and non-PR models tested
- One check valve model
- Two flow reduction models

Brand A Pressure Regulated vs. Non-Pressure Regulated – 1.5 gpm Test

Brand A Pressure Regulated vs. Non-Pressure Regulated – 3.5 gpm Test

Brand B Pressure Regulated vs. Non-Pressure Regulated – 1.5 gpm Test

Brand B Pressure Regulated vs. Non-Pressure Regulated – 3.5 gpm Test

Brand E PRB & Check Valve – 1.5 gpm Test

Brand E PRB & Check Valve – 3.5 gpm Test

PRB Replicate Tests– Brand A Sample #1 1.5 gpm

PRB Replicate Tests– Brand A Sample #1 3.5 gpm

Flowrate Reduction – PRB vs. Non-PRB @ 1.5 gpm

■ Brand A ■ Brand B ■ Brand C

and many many many man

UF FLORIDA IFAS

Flowrate Reduction – PRB vs. Non-PRB @ 3.5 gpm

Brand A Brand B Brand C

UF IFICATIONA CONSERVATION & ECOLORY

Average Flowrate Reduction PRB vs. Non-PRB

UF IFLORIDA Center for LANDSCAPE

PRB Outlet Pressure

UF IFLORIDA Center for I ANDSCAPE

Average Pressure & Flowrate Error – 1.5 gpm

UF FLORIDA Center for LANDSCAPE

Average Pressure & Flowrate Error <u>Rising</u> <u>Limb</u> – 1.5 gpm

UF IFLORIDA CENTER FOR

Average Pressure & Flowrate Error – 3.5 gpm

UF UF VERSITY of LEAS

Average Pressure & Flowrate Error <u>Rising</u> <u>Limb</u> – 3.5 gpm

IFAS LANDSC

Recommendations

- Consider testing only the rising limb of pressure, e.g. for a 30 psi PRB, 40, 60, 70 psi test
- Consider testing only 1.5 gpm since this flowrate is similar to the majority of sprinklers in the field
- No compelling difference between 1.5 gpm & 3.5 gpm results
- Consider a maximum of 10-15% plus/minus deviation in peak flowrate at 1.5 gpm
- Consider average flowrate deviation maximum of 10-15% plus/minus at 1.5 gpm

Error Analysis on Individual Samples Criteria: 1.5 gpm actual flowrate rising limb

EPA Spec Criteria

- Flowrate at max operating pressure compared to calibration flowrate shall be within +/- 12.0%
- Average of all test flowrates compared to calibration flowrate shall be within +/-10.0%
- Average outlet pressure at initial calibration point shall not be less than 2/3 of regulation pressure

Acknowledgements: EPA WaterSense Program

