This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

CALIFORNIA STATE UNIVERSITY, FRESNO

SMARTFARM SOIL LIBRARY & CALIBRATION PROTOCOL

Balaji Sethuramasamyraja, Chandra Krintz, Bo Liu, Rich Wolski and Arthish Bhaskar California State University, Fresno

Outline

Part I - Soil Library

- Soil Library
- Soil Sampling Location and types
- Soil Library Building Process
 - -Soil Homogenization (by Grinding)
 - Soil Saturation
 - Soil Drying

Outline

Part II - Calibration Protocol

- Calibration Protocol
 - Watermark Sensor
 - Raspberry Pi Circuit
 - Sensor Calibration using trough and Buckets
 - Calibration of pH probes
 - Determination of pH for soil samples
 - Results and Discussion

PART I Soil Library

Smart Farm Data Acquisition –New Board

Labelled smart farm DAQ board

Soil Library

•Need Justified to Build a Soil Library

•Sandy, Sandy Loam, Loam, Clay Loam and Clay (5 Soils) as a Start

•Resizable to 12 – 15 Soils based on nature of sensors and research needs

•Could be used for multiple soil parameter sensing like,

- Moisture
- Organic Matter
- Salinity

- pH
- N, P, K, Na
- Compaction

Soil Library

Soil Library Building

- Based on Protocol
- Application (Sensor Calibration)

Soil Library - Location and Types

- The soil collected towards the soil library are from Ranch-71 (Delano, California)
- 4 types of soil collected were *Clay loam, Sandy clay loam, Sandy Loam and Clay*

Soil Texture Map - Ranch 71

12	24 27 25
15 13 11	28 21 22
16 17 18	23

Field Soil Collection – 71N

Dr. Yager and other graduate students got hands-on experience by using an auger to drill out soil samples

Field Soil Collection

- Soils collected in different texture zones from UAL (Univ. Ag. Lab, Fresno State) fields,
 - Almond
 - Citrus
 - Feed Crops

Types of Soil Collected and processed

S. No.	Sample	Type of soil	Location	ID	Status		
1	a	Clay	71N	21	processed		
	b	Clay	71N	23	-		
	А	Sandy loam	71N	14	processed		
2	В	Sandy loam	71N	15	processed		
	С	Sandy loam	71N	17	processed		
3	А	Sandy clay loam	71N	12	processed		
	b	Sandy clay loam	71N	13	processed		
4	а	Clay loam	71N	11	processed		
5	а	Fresno field – 1	-		processed		
	b	Fresno field - 1	-		processed		
6	a	Fresno field – 2	-		-		
	b	Fresno field – 2	-		-		

Soil Validation Through Lab Tests

SAMPLE	ом	ENR	P1	HCO3_P	к	Mg	CA	Na	рН	BUF	Η	CEC	к	Mg	Ca	Η	Na	NO3_N	s	Free	Sol	SAND	SILT	CLAY	TEXTURE	Avail. H2C	ermeabilit	Location
ID		#/A	ppm	ppm	ppm	ppm	ppm	ppm		рН			%	%	%	%	%	ppm		Lime	Salts	%	%	%		In/Ft	In/Hr	
11	0.9L	47	1	16H	73L	197L	4568VH	358H	8.2		0	26	0.7	6.2	87	0	6	11L	19M	н	0.7M	43	22	34	ClayLoam	1.41	0.12	71N
12	1.2L	54	5	17H	167L	311L	4758VH	361H	8.2		0	28	1.5	9	84	0	5	3VL	17M	н	0.5L	33	26	40	Clay/CL	1.58	0.13	71N
13	0.9L	47	11	23VH	123L	244M	3144VH	356H	7.9		0	20	1.6	10	80	0	7.9	6L	10L	н	0.5L	47	20	32	andyClayLoa	1.36	0.14	71N
15	0.5L	40	8VL	17M	46L	138L	1480M	503VH	6.4	6.9	1.1	12	1	9.5	62	9	18.4	3VL	39VH	L	2.7H	61	22	16	SandyLoam	1.17	0.41	71N
17	0.5L	40	13	30VH	63L	56L	1406VH	140H	7.6		0	8.2	2	5.6	85	0	7.4	2VL	9L	L	0.3L	73	12	14	SandyLoam	1.06	0.53	71N
21	1.4L	57	6	28VH	167L	209VL	7408VH	534H	7.8		0	41	1	4.1	89	0	5.6	2VL	306V	н	2.0M	25	24	50	Clay	1.59	0.13	71N
23	1.5L	59	5	13M	157L	263L	5077VH	390H	8.1		0	30	1.4	7.3	86	0	5.7	10L	46VH	н	0.8M	31	24	44	Clay	1.56	0.15	71N
Sampled 2006: 2-36' Probe samples per location																												
Resampled 2012: 12 to 16 X 8" T hand probe per location																												
Resampled 4/18/2015: 8-1.75" x 15" auger cores from 2 adjacent rows between trees N & S of sprinklers																												
Resampled 6/2/2016: 12-1.75" x 16" auger cores from 3 adjacent row marks																												

Soil Prep

- Aggregates broken down with an hammer
- Safety check for Grinding: No huge chunks
- Filtering foreign material:
- E.g., Wood chips were removed manually

Soil Preparation process

Soil Grinder

The Humboldt Soil Grinder

- Function is to grind the aggregate soil particles are broken up into smaller grains
- Continuous grinding is ensured by using the gate below the hopper to feed the soil at a rate that doesn't stall the motor

Gate

Soil Grinder Lab Setup

Soil Saturation

Soil Drying

Forced Air Oven

- At saturation state, the bucket was placed inside this oven
- The temperature was set at 100 F
- The oven is equipped with tubular opening on its ceiling which was used as an entry point for sensor wires

PART II Calibration Protocol

Watermark Sensor – Arduino Uno circuit

UCSB Setup

Watermark Sensor – Raspberry Pi circuit

Watermark Sensor – Raspberry Pi circuit

Watermark Sensor – Raspberry Pi Circuit Integration

Sensor Calibration

Smart Farm Data Acquisition –New Board and its Experimental Setup

A Styrofoam cup is used in the setup which holds ample amount of processed soil to retrieve soil properties using various sensors

Methodology

• The values obtained are displayed in the following format in the XCTU software

open/close circuit button

Calibration of pH Probes -Bench Meter

- Accumet XL200 pH/conductivity benchtop meters provide advance measurements with less work
- Provides pH calibration with 0.001 pH resolution
- pH range -2.000 to 20.000 pH
- Has the option to standardize temperature as needed for our experiment

Determination of pH using soil sample - Setup

Temperature probe and pH electrode

Determination of pH using soil sample (Sandy Clay Loam)procedure

Questions?