This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Calculator for Estimating Peak Water Demand in Residential Dwellings

DAN COLE

WATERSMART INNOVATIONS

OCTOBER 5, 2017

IAPMO Task Group Sponsors and Members

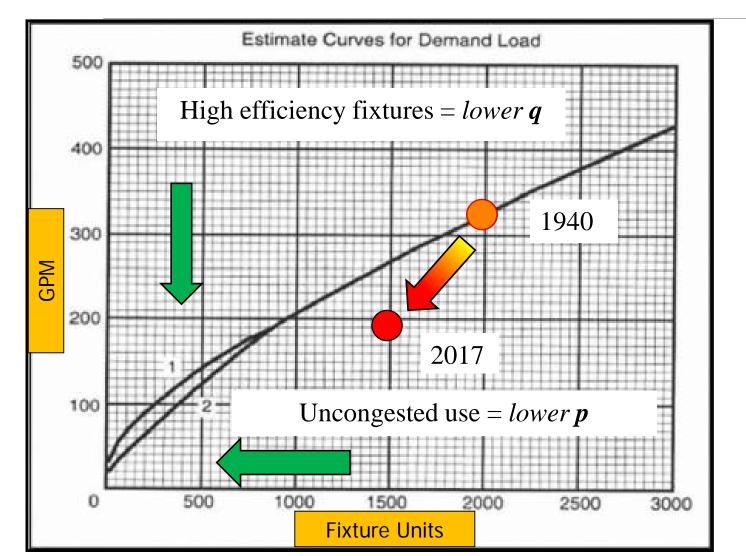
Daniel Cole, Chair, IAPMO, Mokena, IL 60448

Jason Hewitt, CB Engineers, San Francisco, CA 94103

Timothy Wolfe, TRC Worldwide Engineering MEP, LLC, Indianapolis, IN 46240

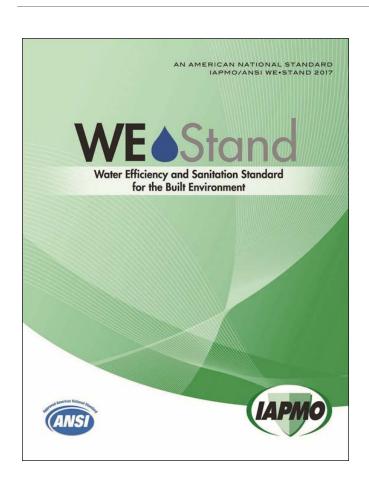
Toritseju Omaghomi, College of Engineering, University of Cincinnati, Cincinnati, OH 45221

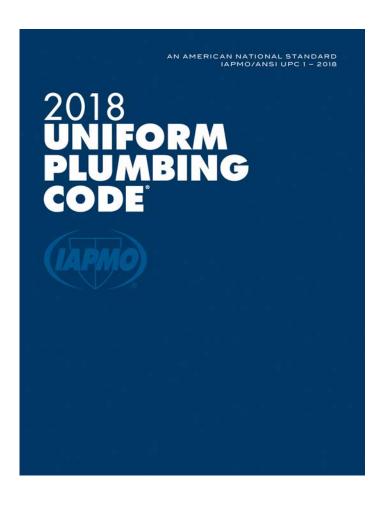
Steven Buchberger, College of Engineering, University of Cincinnati, Cincinnati, OH 45221

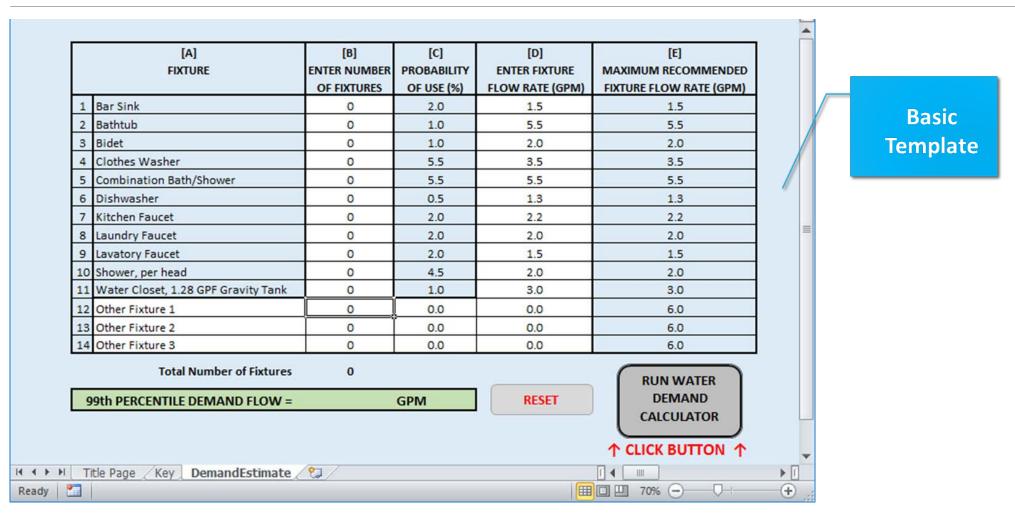


IAPMO Task Group Scope

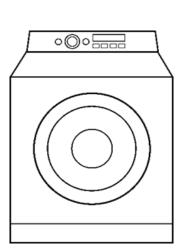
"....will work singularly to develop the probability model to predict peak demands based on the number of plumbing fixtures of different kinds installed in one system."

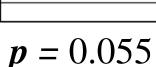

(Bring Hunter into 21st Century)


The Hunter Problem


Today, Hunter's curve is often faulted for giving overly conservative designs....Why?

Resolving the Hunter Problem for Residential Applications





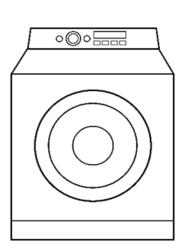
Water Demand Calculator

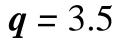
Design Fixture Probability Values

p = 0.045

$$p = 0.020$$

p = 0.010




$$p = 0.010$$

$$p = 0.005$$

Design Fixture Flow Rate Values

$$q = 2.0$$

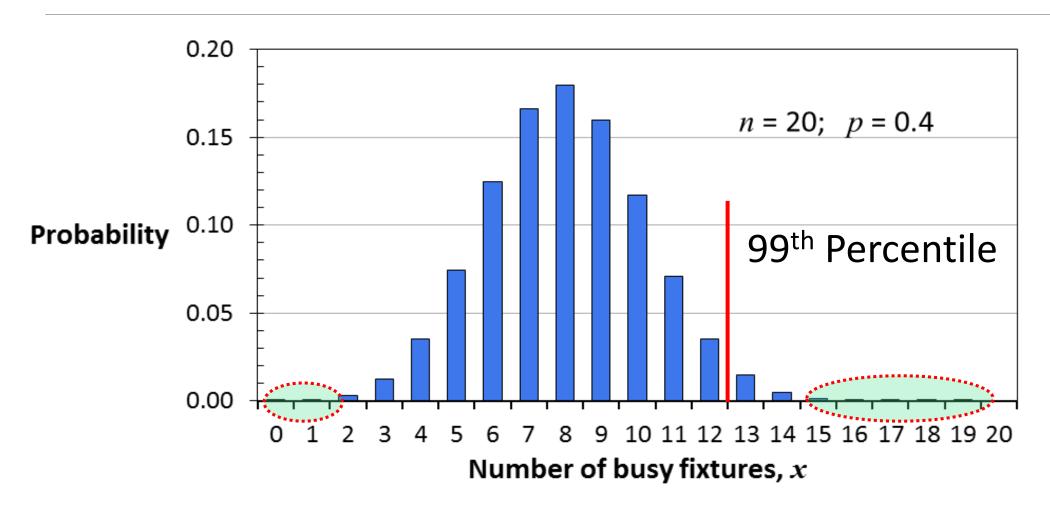


$$q = 1.5$$

$$q = 2.2$$

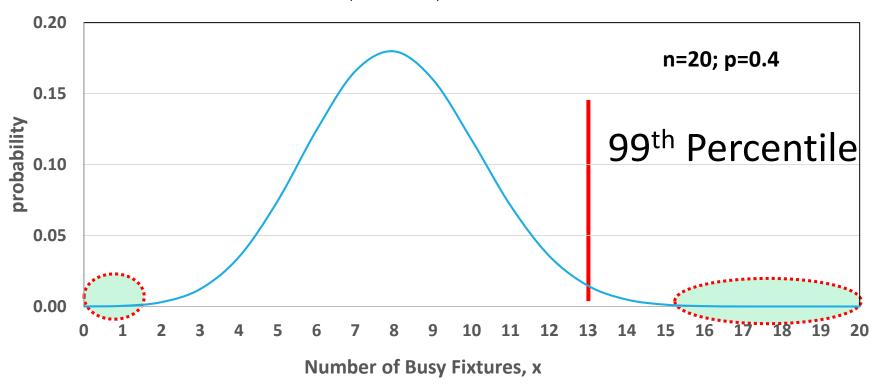
q = 3.0

$$q = 5.5$$



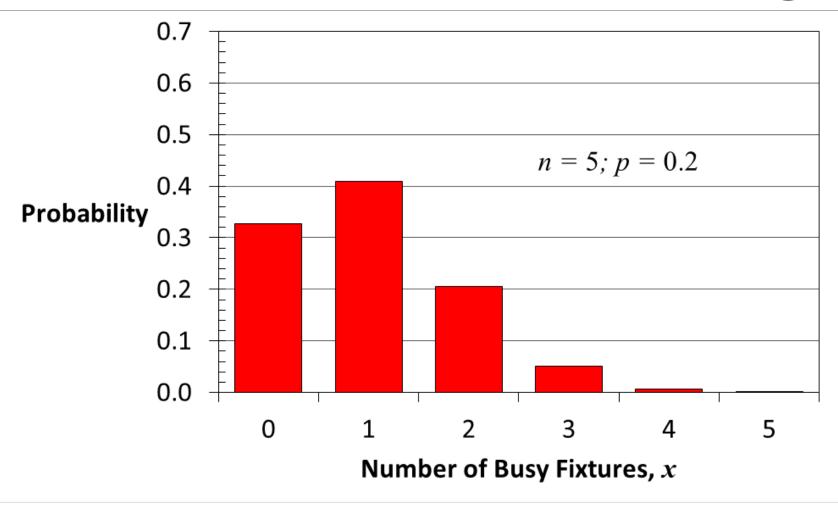
$$q = 1.3$$

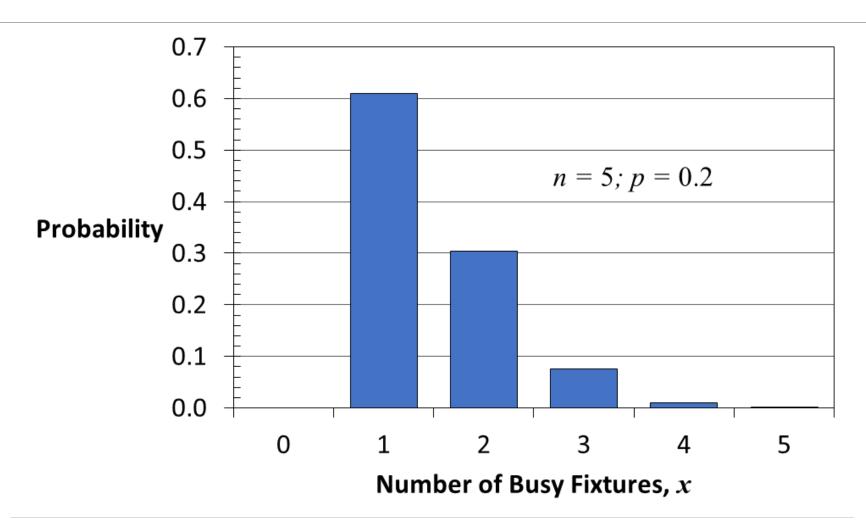
(PEAK) WATER USE MODEL


Binomial Model

$$\Pr\left(\frac{\text{exactly } x \text{ busy}}{\text{out of } n \text{ fixtures}}\right) = \binom{n}{x} p^x (1-p)^{n-x}$$

Normal Approximation Model


$$X = Mean + (z_{0.99}) Standard Deviation$$


[1] Wistort Model (1995)

$$Q_{0.99} = \mu_q + (z_{0.99})\sigma_q \qquad \text{Adding the q-value}$$

$$Q_{0.99} = \sum_{k=1}^K n_k \, p_k \, q_k + (z_{0.99}) \sqrt{\sum_{k=1}^K n_k \, p_k \, (1-p_k) q_k^2}$$

Binomial Distribution (small building)

Zero Truncated Binomial Distribution

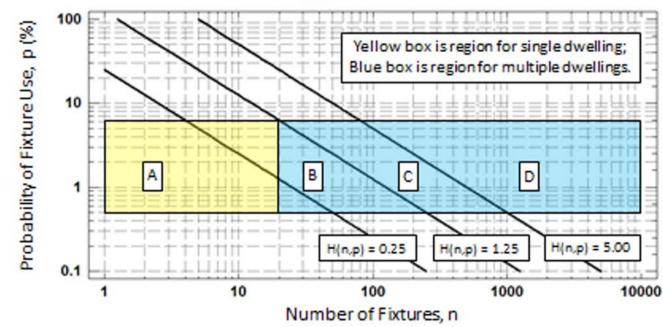
[2] Modified Wistort's Model

$$Q_{0.99} = \sum_{k=1}^{K} n_k p_k q_k + (z_{0.99}) \sqrt{\sum_{k=1}^{K} n_k p_k (1 - p_k) q_k^2}$$

$$Q_{0.99} = \frac{1}{1 - P_0} \left[\sum_{k=1}^{K} n_k p_k q_k + (z_{0.99}) \sqrt{\left[(1 - P_0) \sum_{k=1}^{K} n_k p_k (1 - p_k) q_k^2 \right] - P_0 \left(\sum_{k=1}^{K} n_k p_k q_k \right)^2} \right]$$

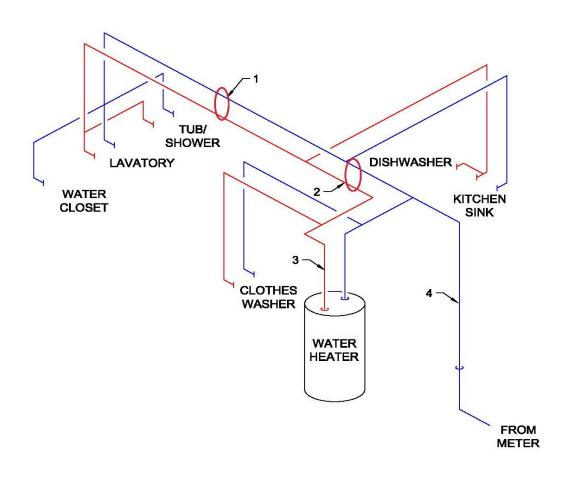
- Note:
 - $P_0 = \prod_{k=1}^{k} (1 p_k)^{n_k}$ is probability of stagnation in a home (i.e. no water use)
 - \diamond Addresses water demand in single family homes with high P_0
 - \bullet Transitions back to Wistort's model as P_0 approaches 0

[3] Exhaustive Enumeration


[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]		
Casa	cw	DW	KF	LF	D	D	P _{DW} P _{KF}	D	D.	D D	Q	T.T.	Q	B.T.	B.T.
Case	CVV	DVV	ΚF	LF	Pcw	PDW	FKF	P_{LF}	(gpm)	Probability	Ranked	Probability	CDF		
1	0	0	0	0	0.945	0.995	0.980	0.980	0.0	0.9030401	0.0		0.000		
2	•	0	0	0	0.055	0.995	0.980	0.980	3.5	0.0525579	1.3	0.046802	0.047		
3	0	•	0	0	0.945	0.005	0.980	0.980	1.3	0.0045379	2.0	0.190072	0.237		
4	0	0	•	0	0.945	0.995	0.020	0.980	2.2	0.0184294	2.2	0.190072	0.427		
5	0	0	0	•	0.945	0.995	0.980	0.020	2.0	0.0184294	3.3	0.000955	0.428		
6	•	•	0	0	0.055	0.005	0.980	0.980	4.8	0.0002641	3.5	0.542058	0.970		
7	•	0	•	0	0.055	0.995	0.020	0.980	5.7	0.0010726	3.5	0.000955	0.971		
8	•	0	0	•	0.055	0.995	0.980	0.020	5.5	0.0010726	4.2	0.003879	0.975		
9	0	•	•	0	0.945	0.005	0.020	0.980	3.5	0.0000926	4.8	0.002724	0.978		
10	0	•	0	•	0.945	0.005	0.980	0.020	3.3	0.0000926	<u>5.5</u>	0.011062	0.989		
11	0	0	•	•	0.945	0.995	0.020	0.020	4.2	0.0003761	<u>5.5</u>	0.000019	0.989		
12	•	•	•	0	0.055	0.005	0.020	0.980	7.0	0.0000054	5.7	0.011062	1.000		
13	•	•	0	•	0.055	0.005	0.980	0.020	6.8	0.0000054	6.8	0.000056	1.000		
14	•	0	•	•	0.055	0.995	0.020	0.020	7.7	0.0000219	7.0	0.000056	1.000		
15	0	•	•	•	0.945	0.005	0.020	0.020	5.5	0.0000019	7.7	0.000226	1.000		
16	•	•	•	•	0.055	0.005	0.020	0.020	9.0	0.0000001	9.0	0.000001	1.000		
						Sum	1.0000000	Sum	1.000000						

[4] Q1+Q3

Number of Fixtures	Number of Combinations	Fixture Demand (gpm)	Design Flow (giving 95 th to 99 th percentile)
1	2	q_1	q_1
2	4	$q_2 \leq q_1$	q_1
3	8	$q_3 \le q_2 \le q_1$	$q_1 + q_3$
4	16	$q_4 \le q_3 \le q_2 \le q_1$	$q_1 + q_3$
5	32	$q_5 \le q_4 \le q_3 \le q_2 \le q_1$	$q_1 + q_3$
6	64	$q_6 \le q_5 \le q_4 \le q_3 \le q_2 \le q_1$	$q_1 + q_3$


Summary of Methods

Region	Spatial Scale	Range for $H(n,p)$	Method
A	Small	$0 < H(\underline{n,p}) < 0.25$	Exhaustive Enumeration; q1+q3
В	Small to Intermediate	$0.25 \le H(\underline{n,p}) < 1.25$	Exhaustive Enumeration
С	Intermediate to Large	$1.25 \le H(\underline{n,p}) < 5.00$	Modified Wistort Method
D	Large	$H(n,p) \ge 5.00$	Wistort Method

APPLICATION

Small Residential Building Pipe Layout

Peak Flow Building Supply

	[A] FIXTURE	[B] ENTER NUMBER OF FIXTURES	[C] PROBABILITY OF USE (%)	[D] ENTER FIXTURE FLOW RATE (GPM)	[E] MAXIMUM RECOMMENDED FIXTURE FLOW RATE (GPM)
1	Bar Sink	0	2.0	1.5	1.5
2	Bathtub	0	1.0	5.5	5.5
3	Bidet	0	1.0	2.0	2.0
4	Clothes Washer	1	5.5	3.5	3.5
5	Combination Bath/Shower	1	5.5	5.5	5.5
6	Dishwasher	1	0.5	1.3	1.3
7	Kitchen Faucet	1	2.0	2.2	2.2
8	Laundry Faucet	0	2.0	2.0	2.0
9	Lavatory Faucet	1	2.0	1.5	1.5
10	Shower, per head	0	4.5	2.0	2.0
11	Water Closet, 1.28 GPF Gravity Tank	1	1.0	3.0	3.0
12	Other Fixture 1	0	0.0	0.0	6.0
13	Other Fixture 2	0	0.0	0.0	6.0
14	Other Fixture 3	0	0.0	0.0	6.0

6 Fixtures

UPC with Hunter's Curve gives 10gpm

15% Reduction

Total Number of Fixtures

6

99th PERCENTILE DEMAND FLOW = 8.5 GPM

RESET

RUN WATER DEMAND CALCULATOR

Large Residential Apartment

Peak Flow Building Supply

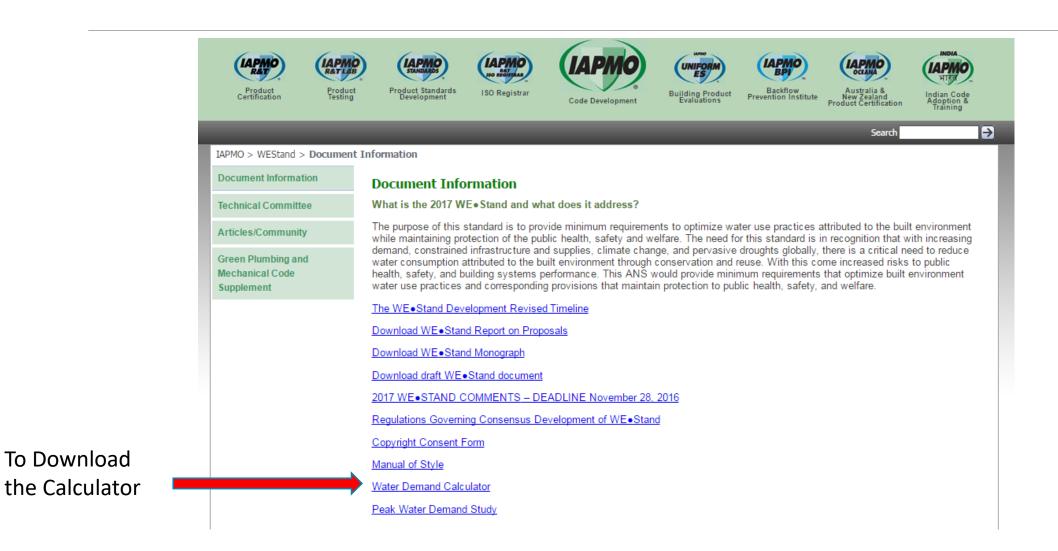
	[A] FIXTURE	[B] ENTER NUMBER OF FIXTURES	[C] PROBABILITY OF USE (%)	[D] ENTER FIXTURE FLOW RATE (GPM)	[E] MAXIMUM RECOMMENDED FIXTURE FLOW RATE (GPM)
1	Bar Sink	0	2.0	1.5	1.5
2	Bathtub	0	1.0	5.5	5.5
3	Bidet	0	1.0	2.0	2.0
4	Clothes Washer	100	5.5	3.5	3.5
5	Combination Bath/Shower	200	5.5	5.5	5.5
6	Dishwasher	100	0.5	1.3	1.3
7	Kitchen Faucet	100	2.0	2.2	2.2
8	Laundry Faucet	100	2.0	2.0	2.0
9	Lavatory Faucet	300	2.0	1.5	1.5
10	Shower, per head	0	4.5	2.0	2.0
11	Water Closet, 1.28 GPF Gravity Tank	300	1.0	3.0	3.0
12	Other Fixture 1	0	0.0	0.0	6.0
13	Other Fixture 2	0	0.0	0.0	6.0
14	Other Fixture 3	0	0.0	0.0	6.0

1200 Fixtures

UPC with Hunter's Curve gives 402gpm

61% Reduction

Total Number of Fixtures


1200

99th PERCENTILE DEMAND FLOW = 155.4 GPM

RESET

RUN WATER DEMAND CALCULATOR

http://www.iapmo.org/WEStand/Pages/DocumentInformation.aspx

Questions?