This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

M&V Guidelines, Water Retrofits, & NextGeneration PPPs for Public Sector WaterSmart Innovations 2017

Jorge Figueroa, Western Resource Advocates

The Big Picture: Framing the Challenge

The Global Risks Landscape 2017

What is the impact and likelihood of global risks?

Next 10 years

Risks that can cause Significant negative impact to countries and industries (likelihood v. impact)

Source: World Economic Forum, 2017

The Perfect Storm: Water Scarcity and the Great and Growing Cities of the West

Projected Colorado River Supply-Demand Imbalance: greater than 3.2 million acre-feet by 2060

The Perfect Storm: Colorado River Water Supply and Demand Imbalance

STATE	POPULATION (JULY 2008)	POPULATION GROWTH (2000-2008)	RANK	PRECIPITATION (INCHES)	RANK
Nevada	2,600,167	30%	1	9.5	50
Arizona	6,500,180	27%	2	13.1	48
Utah	2,736,424	23%	3	11.9	49
Colorado	4,939,456	15%	7	15.5	45
New Mexico	1,984,356	9%	17	13.9	46
U.S. Average		8%		34.3	

Source: Western Resource Advocates, 2009

2050 and beyond

NASA: "Unprecedented Drought Risk in the American Southwest"

Source: Cook et al., 2015

Water Security

"The availability of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies."

Source: Grey and Sadoff, 2007

Historical Trends

Long-term data reveals:

- Prices for water and sewer maintenance continue to rise at rate much higher than overall rate of inflation (CPI)
- Recent price trends for electricity generally tracking overall rate of inflation
- Recent price trends for natural gas fallen below the overall rate of inflation

Source:

Janice Beecher, Michigan State University, Trends in Consumer Prices (CPI) for Utilities

Exhibit 1. Long-term trends in the Consumer Price Index (CPI) for utilities (1913-2013). The index is set to 100 for 1982-1984 except for telephone and wireless services, where the index is set to 100 for 1997. Year (*) indicates start of series.

Current and Future Municipal Water Market Trends

Recent Trends

Water Research Foundation, 2014

Median increase in nominal monthly bills 2004-2012 was 50%, compared to cumulative increase in CPI of 22% in same period

Next 25 Years

American Water Works Association, 2012

Buried No Longer Report's Key Findings,

- 1. Nationally, investment needs for water infrastructure more than \$1 trillion over next 25 years.
- 2. Water bills will go up

Data analyzed by the Environmental Finance Center at the University of North Carolina, Chapel Hill and Raftelis Financial Consultants, Inc. Data Source: The national biennial AWWA-RFC Water and Wastewater Rate Surveys. The sample of 72 utilities were consistent across all years.

Monthly charge for 10 ccf relative to 2004 charge for 72 nationwide utilities

BURIED NO LONGER:

Confronting America's Water Infrastructure Challenge

Water and Energy EPC Market Study Results

Potential Savings via Market-Based Solutions in the Colorado River Basin States*

Savings Type	Total Savings Potential	
Electricity	6,400,000 MWh	
Natural Gas	4,200 MCu. Ft	
Water	104,000 AFY	
\$\$\$	\$975,000,000	

Public Facilities

Public Water Systems

Public Wastewater Systems

^{*}Calculations from Western Resource Advocates and McKinstry, Inc. 2015, and subsequent ground-truthing verifying the study's data and assumptions.

Justification

Potential savings in public buildings via water efficient retrofits*

State	Acre-feet/yr	\$/yr
Colorado	6,840	\$8,400,000
Nevada	4,680	\$7,800,000
New Mexico	2,280	\$2,800,000
Total	13,800	\$19,000,000

^{*}Calculations from the *Tapping the Power of the Market* study, and subsequent ground-truthing verifying the study's data and assumptions

Measure	Penetration Level	Potential Savings (AFY)
Turf Replacement	25% of single family homes, ≤ 60% turf	125,800 to 211,700
Cooling Towersincreased cycle concentration	50% by 2030	3,100 to 24,500
Commercial landscape audits w/ irrigation upgrades	25% commercial irrigators	1,500 to 5,800

Source: Colorado SWSI Phase 2 Conservation Matrix

Financing and Paying

Performance Contracting Projects

Major Steps

Water Measurement and Verification (M&V) Project

Drivers

- Lack of M&V guidelines
 for consumptive use reduction measures
- Lack of water efficiency investments through state EPC programs
- Questionable quality of data currently reported on water savings that limits the ability for states to compare savings across projects

Water Measurement and Verification (M&V) Project

Vision

Bring uniformity to the way states, utilities, performance contractors, and water efficiency engineering consultants calculate water savings

Goals

- Provide clear, accessible, step-by-step methods to determine water savings
- © Create consistency and enhance transparency in how water savings are calculated that allows for comparison of savings across similar efficiency programs and measures
- Strengthen the credibility of water efficiency savings and reduce M&V costs
- Model and reference for future protocols in analogous water efficiency markets, e.g.

 Property Assessed Clean Energy Programs (PACE M&V),
 Water Utility Demand Management Programs (EM&V)

Water Measurement and Verification (M&V) Project

Process

- Engaging performance contracting industry stakeholders and key subject matter experts is essential to the process
- **q** Develop a usable product within less than a year
- **q** Adopted by
 - State EPC programs
 - Steering Committee member organizations
 - Technical Advisory Groups (TAGs) participants

Water, State EPCs, and M&V Project (2017) | Steering Committee

State Officials

- Harold Trujillo, New Mexico Energy Technology and Engineering Bureau Chief, New Mexico EPC Program
- Kelly Thomas, Energy Program Manager, Nevada Governor's Office of Energy, Nevada EPC Program
- Taylor Lewis, Program Engineer, Colorado Energy Office Colorado EPC Program

Utilities

- Patrick Watson, Conservation Services Administrator, Southern Nevada Water Authority (SNWA)
- Carlos Bustos, Water Conservation Program Manager,
 Albuquerque Bernalillo County Water Utility Authority
- Frank Kinder, Senior Conservation Specialist, Colorado Springs Utilities

Stakeholder-Based Organizations

- Donald Gilligan, President, NAESCO
- Mary Ann Dickinson, President and CEO, Alliance for Water Efficiency
- William D. Taylor, Private Sector Co-Chair, ESC Nevada Chapter
- Oscar Rangel, Private Sector Co-Chair, ESC Nevada Chapter
- Scott Griffith, Private Sector Co-Chair, ESC Mexico Chapter

Federal Officials

 Paul Matuska, Water Accounting and Verification Group Manager, US Bureau of Reclamation

Performance Contracting Consultants

- John Canfield, President, Trident Energy Services
- Chris Halpin, President, Celtic Energy

Project Organization

Purpose and Objective Transparency, feedback Stakeholder Review Process on draft protocols, buy-in (Energy Service Coalition) Feedback on process and work plan; **Steering Committee** high-level review; education and buy-in Measure Protocols Protocol Development **Usability** Validity Usability, TAG 1: Outdoor TAG 2: Turf Conversion TAG 3: Cooling Towers validity, Technical Advisory Groups consensus

Co-Leads and Facilitators WRA Colorado EPC Program **Technical Lead PNNL TAG Facilitator WRA** Senior Advisors of Project **NREL**

9Kft Strategies in Energy

Structure of M&V Protocols

- **Ø**M&V Plan Elements
- **Ø** Baseline and Post Installation Water Use Determination
- **Ø** Data (Weather) Normalization
- **©** Commissioning Protocol

M&V Process

Determine measurement boundary

Document baseline condition

Define study and measurement periods

Measure baseline

Normalize water use

Measure postinstallation water use

Collect water use data via a meter

Implement water conservation measure

Water Use Estimate and Normalization

Water Use Determination

Preferred method: Continuous measurement with dedicated meter

Acceptable method: Short term measurement with temporary meter

Normalization

Develop a ratio of historic weather conditions to current conditions

E.g., Historic Net ET/Current Net ET

Adjust water use by multiplying by this ratio

M&V Protocols

RESULTS

- Create consistency and enhance transparency in how water savings are calculated
- Increase confidence in water efficiency investments for public sector clients, lenders, performance contractors, state EPC programs, and water utilities

Thank You!

For questions and/or copies of protocols:

Jorge Figueroa Western Resource Advocates

jorge.figueroa@westernresources.org

Kate McMordie Stoughton
Pacific Northwest National Laboratory
Katherine.McMordieStoughton@pnnl.gov

