This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Colorado Water Collaboratory : the campus as living laboratory

Paul W. Lander University of Colorado-Boulder WSI 2017 Chad Mortensen Metro State University-Denver Las Vegas, NV

Why College Campuses?

1. Water Savings:

Need to optimize available water supplies in many water scarce regions of the US Reach individual campus goals to reduce water use

2. Implementation Strategies:

Overcome past struggles with efficiency projects on campuses No single dedicated campus position for water resources

3. Funding:

Lack of dedicated funding source for water conservation projects. Gain support by showing that conservation is a good & sustainable idea, and "proving it". Potential for combined funding / grant / rebate / bulk purchases

4. Flexibility for Behavior and/or Structural Changes

> M. Maddaus, AWE College Water Efficiency Group. 2017

Measuring to Manage

Summary for College Water Savings:

- HUGE Water Savings Potential:
 - 1. Billions of gallons of water used on campuses
 - UC system alone uses 4.9 Billion gallons per year
 - 2. Universities are often in the top 10 customers of the local water utility
 - Water rates planned to increase in future making projects more attractive
 - 4. Millions of inefficient fixtures can be replaced across the state!
 - 5. Synergy with mutually beneficial "goals" to save water :
 - Campus can be "sustainable" and save water
 - Water utility can help meet rebate targets and water saving goals
 - Colleges are researching and piloting alternative water sources!

17 Principles for Water-Wise Cities

Regenerative Water Services

- Replenish Waterbodies and their Ecosystems
- Reduce the Amount of Water and Energy Used
- Reuse and Use Diverse Sources of Water
- Apply a Systems Approach for Integration with Other Services
- Increase the Modularity of Systems for Multiple Options

2 Water Sensitive Urban Design

- Enable Regenerative Water Services
- Design Urban Space to
- Reduce Flood Risk
- Enhance Livability with Visible
 Water
- Modify and Adapt Urban Materials to Minimise Environmental Impact

3 Basin Connected Cities

- Secure Water Resources and
- Plan for Drought Mitigation • Protect the Quality of Water
- Resources
- Plan for Extreme Events

Water Wise Communities

- Empowered Citizens
- Incentivized Professionals
- Transdisciplinary Planning Teams
- Progressive Policy Makers
- Leaders that Engage and Engender Trust

Closing the loop

A closed loop water system avoids costly centralised treatment – it can even extract value and generate energy while processing waste

Matching Quality to Service

WEST TOWARD PACIFIC OCEAN 8,666,000 AF

WEST TOWARD PACIFIC OCEAN 8,666,000 AF

The Multiple Benefits of Water Efficiency

BENEFITS OF EFFICIENCY INCLUDE:

- Maintain agricultural production
- Reduced non-beneficial consumptive losses, creating new supply
- Less polluted runoff into rivers, streams, and groundwater aquifiers
- More water to support in-stream flows
- Less energy for pumping
- Reduce or eliminate need for expensive infrastructure
- Less vulnerability to drought

www.pacinst.org

*Numbers in this figure are for illustrative purposes. Actual quantities would depend on site-specific conditions.

Colorado at Boulder

University of Colorado--Boulder public institution that was founded in 1876. It has an undergraduate enrollment of **27,010**,

the campus size is **600 acres**.

Water +

Credit	Status	Points
Water Use	 Complete 	2.31 / 5.00 😧
Rainwater Management	 Complete 	2.00 / 2.00
Wastewater Management	X Not Pursuing	0.00 / 1.00

University of Colorado Boulder OP-26: Water Use

	Status	Score	9	Responsible Part	v
			5.00 🕑		-
	×	2.51/	5.00		Kristin Eple Administrat
					Facilities Management Administratio
	Reporting F	ields	Credit Info		
				"" indicated	s that no data was submitted for this fie
				marcates	s that no data was submitted for this he
Level of water risk for the institution's main campus:					
				i o mani campuor	
	Link				
	High				
	High				
	High				
		se (pot	able and non-po	otable combined)::	
		se (pot			Baseline Year
				otable combined):: ormance Year	Baseline Year 413,695 Gallons

Potable water use::

It has a total undergraduate enrollment of **20,186**, its setting is urban, and the campus size is **127 acres**

Colorado Mesa University is a public institution that was founded in 1925.

It has a total undergraduate enrollment of **9,299**, its setting is city,

and the campus size is **86 acres**.

CMU:

outdoor watering: 50% untreated/50% city treated water 31 water meters on buildings (includes some outdoor irrigation) 12 water meters for irrigation and athletic fields (treated) MSU-Denver : treated domestic water is supplied to campus by Denver Water, and untreated water from alluvial groundwater well.

Psychological Influences

- Understanding the psychology underlying water conservation can better hone conservation programs
 - Implement effective, cost-efficient strategies to encourage conservation
 - Subtle wording changes on signs can have large effects
 - Discover innovative strategies
 - Psychologists often looking to advance basic science as well as application, so constantly searching for new tactics
 - Select tactics depending on the target population
 - No strategy is a panacea; psychologists often look to see what is most effective depending on the situation

Percent towel reuse

Environmental Sign Norm Sign

Improving Normative Influence

- Can we improve normative influence? What if only a minority perform the behavior?
 - Communicating an upward trend in popularity has unique effects (Mortensen et al., in press; Sparkman & Walton, in press)
 - Communicated water conservation rate
 - Norm only
 - Norm plus trend
 - Measured water use during a "toothpaste taste test"

Water Use During Tooth Brushing

 $F(1, 95) = 5.94, p = .02, \eta_p^2 = .06, Cl_{95\%} [-0.261, -0.027]$

Collaboratory Research

- Gathered data from three CO campuses (faculty, students, staff)
- Measured water conservation intentions
 - Behavior change
 - Installing water-efficient appliances
- Predicted intentions using
 - Norms
 - Perceived Behavioral Control
 - Attitudes

Collaboratory Research

- Intentions to change behavior predicted by
 - Norms (*p* < .001)
 - Perceived Behavioral Control (p < .001)
 - Attitudes (*p* < .001)</p>
- Intentions to install appliances predicted by
 - Norms (*p* < .001)
 - Perceived Behavioral Control (p < .001)
 - NOT Attitudes (p = .50)
- Attitudes <u>unrelated</u> to use of water-conserving technology

What Psychology Adds

- Psychologists have studied for decades how to change behavior and how to evaluate effectiveness
- Psychological research supports shows incentive programs can work, but these can be costly
 - People can also be motivated in other ways
- Collaboration with a social psychologist in your region can improve energy conservation programs

Expected outcomes of the multi-phased Colorado Water Collaboratory include:

- Greater awareness of the need for water use efficiency
- Identification of potential urban water use efficiency practices (particularly outdoor)
- Improved water use efficiency practices at the three universities
- Technology/information transfer from the three university campuses
 - ♠to individual homes of students, faculty and staff.
- Increased interest in students, faculty and staff >
 - improved water use efficiency practices on campus and at home.

Paul.W.Lander@colorado.edu

cmorten2@msudenver.edu

socialnorms.org