This presentation premiered at WaterSmart Innovations

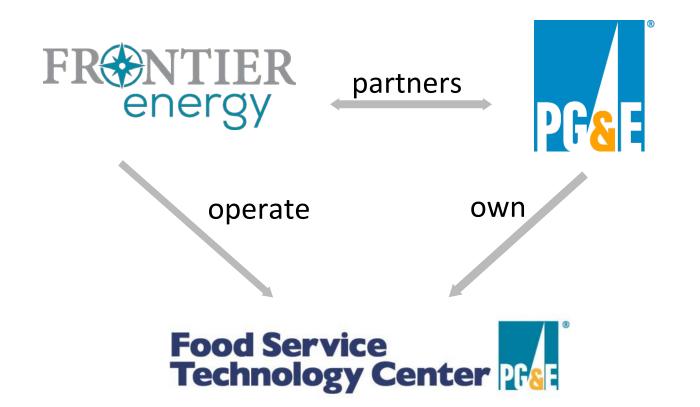
watersmartinnovations.com

Results of 22 Monitoring Projects on Conveyor Dishwashers in Commercial Kitchens

Brought to you by:

October 6th, 2017

Presentation by: Amin Delagah Research/Project Engineer



30 Years of Partnership

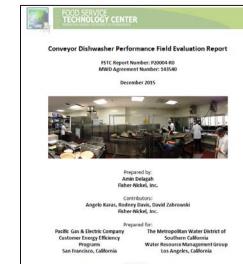
The Food Service Technology Center (FSTC) is an unbiased energyefficiency research program <u>funded by California utility customers.</u>

Appliance Testing

Seminars

Energy Audits

Facility Design


Conveyor Dishwasher Summary Reports

Original report funded by: PG&E and Metropolitan Water District under the Innovative Conservation Program in 2015

 Covers 9 dishwasher case studies
 Summarizes 9 previously monitored sites http://bewaterwise.com/ICP_projects.shtml

ASHRAE Conference Paper in 2017

- Adds 2 new case studies
- Covers prior 18 sites
- Refines the findings from all sites <u>www.techstreet.com/searches/17148009</u>

Test Sites: The Claremont Hotel, Facebook, Google, Stanford

Results from 20 Field Monitoring Projects on Rack and Flight Conveyor Dishwashers in Commercial Kitchens

Amin Delagah Rodney Davis Michael Slater Angelo Kara

ABSTRACT

The spin action of the mark prior 2000 means paper angular for 2 hard 2 minutes, and particip energing determines and antipart of the spin angular for 2 hard 2 minutes of the spin angular particip energy of the spin angular particip effects and the spin angular particip effects angular particip effects angular particip effects and the spin angular particip effects and the spin angular particip effects and the spin effects and the spin effects angular particip effects angular particip effects angular particip effects angula

INTRODUCTION

The manying of concepts makines multiple is facilities an designed to done for the lower wave, such as deduce, gives ware on the mater symmetry. The concepts are presented on the symmetry done wave on bolose, the makines next spentage anticinarily wall have realization that may go surveited. Additionally, may making and a second spectra of the symmetry done makines are seen in the level present on a surveit real for the fielding they wave was a non-here explained and the symmetry done makines are reacted to the fielding they varies are to non-here explained in the degraph wave for the symmetry and the symmetry

In error pass, the delawake match the ordered forwards solutions of admands technologies, and then nonrise an expension by the most first adprox of the delawake for the second solution of the delawake for the second solution of the second solution o

The Theorem Weil in the Open in the last stars are true of the data and parts stars (s) or the star and a star of the straining particular of high particular of high stars and the straining particular of high stars are stars at a strain the straining particular of high stars and the straining particular of high stars and the straining particular of high strain the straint

Recent Publications

Rack Conveyor Design Guide

- Focus on water, energy and chemical savings
- Information is relevant to other types of dishwashers

https://fishnick.com/design/dishwashers/

ET Coordinating Council Paper

- Funded by PG&E
- Monitoring at SFO catering site
- Compares best-available technologies with flight conveyors

http://www.etcc-ca.com/reports/energy-efficient-flightconveyor-dishwashers

Learning Objectives

- Distinguish between rack and flight type conveyors in the field and be able to characterize the machine's efficiency level
- Recognize that the rated rinse flow rate is not a good metric for gauging the "real world" water and energy use
- Understand the distortions in the marketplace that make it difficult for an operator to see clearly between models and choose the best conveyor model
- Develop a solid incentive programs that promotes best-in-class dishwashers over business-as-usual efficiency upgrade

Why the Research

- Based on preliminary studies, old rack conveyor dishwasher can account for up to 80% of the total hot water use
- Set out to sub-meter dishwashers in the field to measure savings potential
- Rapid advances in technologies being marketed in last 5 years, high savings potential
- What technologies work?
- Will it save over its useful life?
- Which technologies are marketing hype?
- First-of-its kind research

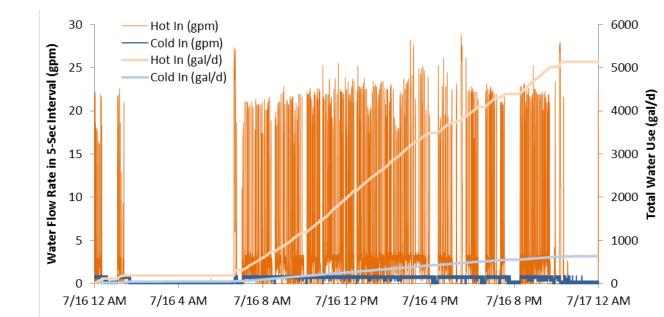
Sites and Condition of Dishwashers

Observations

- Most units were found in poor condition
- Shocking water use for tank filling and top off operations

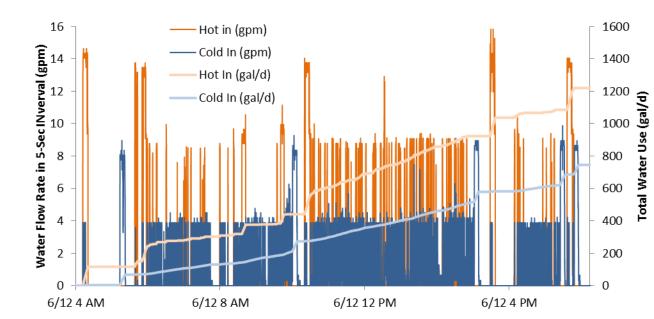
Dishwasher Projects

- 7 Hotels, 3 Restaurants
- 10 School, Commercial, Army Cafeterias
- 4 2 Airline Catering Facility



Original Dishwasher in Work Cafeteria

- 98 gph spec. rinse flow rate
 189 gph measured rinse flow rate
 The high flow rate and high drain
- temperatures where causing wastewater pumps to seize up

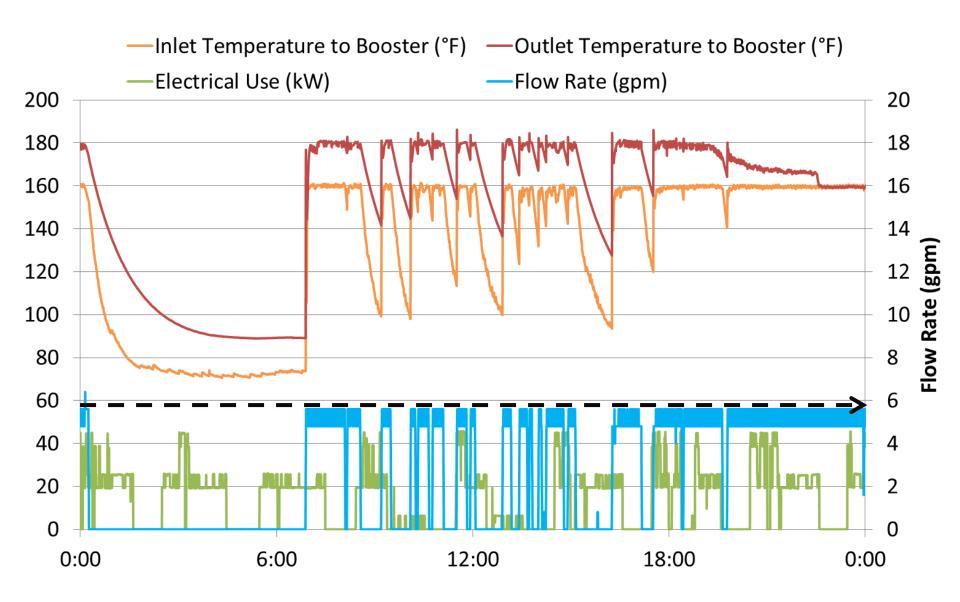

The unit used over 2 million gallons/y

New Unit w/ Heat Recovery + Blower Dryer

- 58 gph spec. rinse flow rate
 71 gph measured rinse flow rate
 - More comfortable work environment
 - Insulated doors
 - Door seal system
- < Vent fan control
- Energy saver mode

Results From Flight Dishwasher Replacement

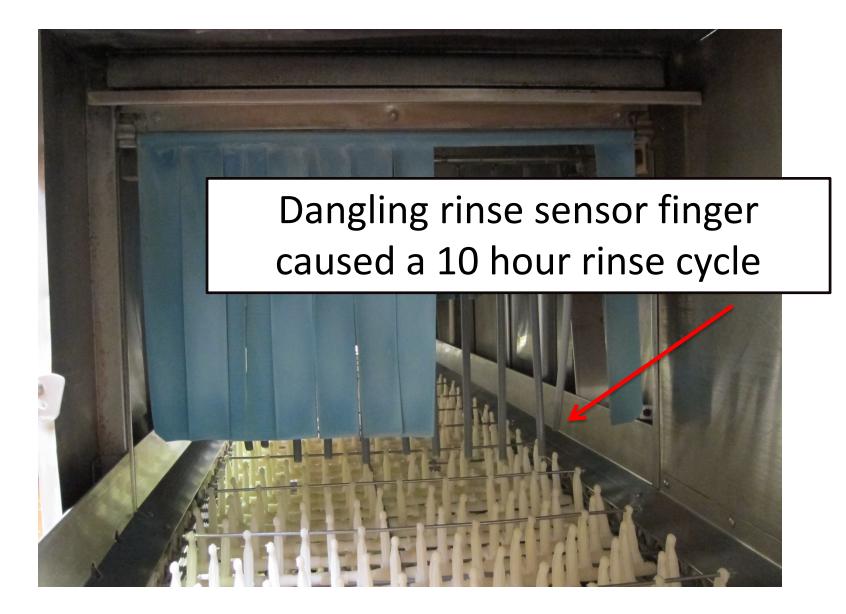
	Water Use (gal/d)		Electricity Use (kWh/d)		Gas Use (therms/d)	Utility Cost (\$/d)	Total Energy Use (therms/d)
Original Flight Conveyor Dishwasher	5656		668		48.0	\$271	70.8
Replacement Flight Conveyor w/ Heat Recovery + Blower Dryer	1857		931		10.0	\$240	41.8
Savings Percentage	67%					11%	41%
	The addition of a blower dryer on the replacement unit increased overall electricity use						


Dishwasher Change Out at a Large Hotel

- Existing flight machine was consistently breaking down after being in service for 20 years.
- Costing the hotel \$12,000 a year to maintain.

- The flight conveyor was being operated by 1 or 2 staff members.
- Unit oversized, no longer meeting their needs to operate the restaurant and conference catering events.
- Executive chef and facilities director were looking to downsize to a rack-type conveyor.

Hot Water Use Profile



Dishwasher Change Out in a Large Hotel

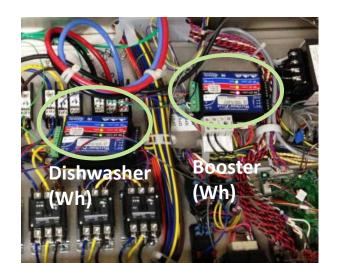
Original rackless conveyor used 360 gal/h rinse water continuously when the machine is in operation. FSTC recommended choosing a Best-in-Class model using 78 gal/h.

What's happening here?

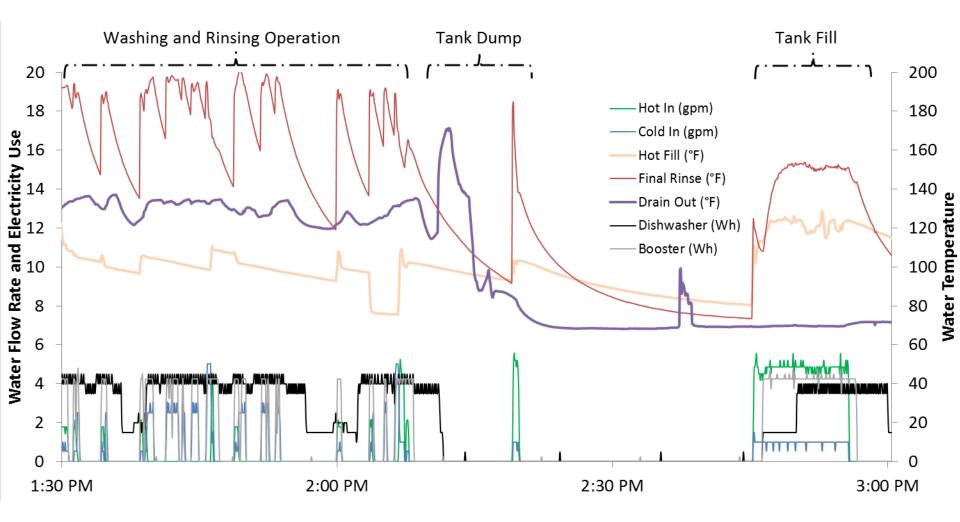
Surprise Savings From Downsizing

	Flight	66"-Rack	Percentage Reduction
Reduction in Operating Time (h/d)	9.1	2.9	68%
Reduction in Hot Water Use (gal/d)	3,700	395	89%
Reduction in Rinse Flow Rate (gpm)	6.0	1.5	75%
Daily Reduction in Gas Use (therms)*	50.4	4.2	92%
Daily Reduction in Electricity Use (kWh)*	398	179	55%


*Switched from an external gas booster heater on the original flight conveyor to a onboard electric booster heater on the new rack conveyor.


What We Monitored and Why?

Measured water and energy use and temperature


- Inlet water and temperature
- Prewash tank, wash tank, rinse tank and drain temps
- Electricity use of the conveyor and booster (if applicable)
- Estimated gas use at water heater

Needed the whole data "picture"

Flow profile of water/energy process

Conveyor Dishwasher Monitoring

Question: What's the best parameters to use for comparing conveyor dishmachines?

Considered 70 measured or calculated parameters:

- Total water or total energy
- Operational time: rinse, conveyor and span
- Flow rates

Answer: Normalized all data to total water or energy consumption per hour of rinse operation.

Rinse time ~ value-added work time

Theoretical Specs VS. Actual Use

Question: How does the theoretical dishwasher water use (tank fill and rinse) per hour of rinse operation compare to actual water use?

 $\dot{V}_{theoretical\,(gph)} = V_{tank\,capacity} \times \left(\frac{\text{Daily Tank Fills}}{t_{Rinse}}\right) + \dot{V}_{Rated\,(gph)}$ $\dot{V}_{actual\,(gph)} = \frac{V_{total\,(Rinse+Tank\,Fill+Tank\,Top\,Off)}}{t_{Rinse}}$

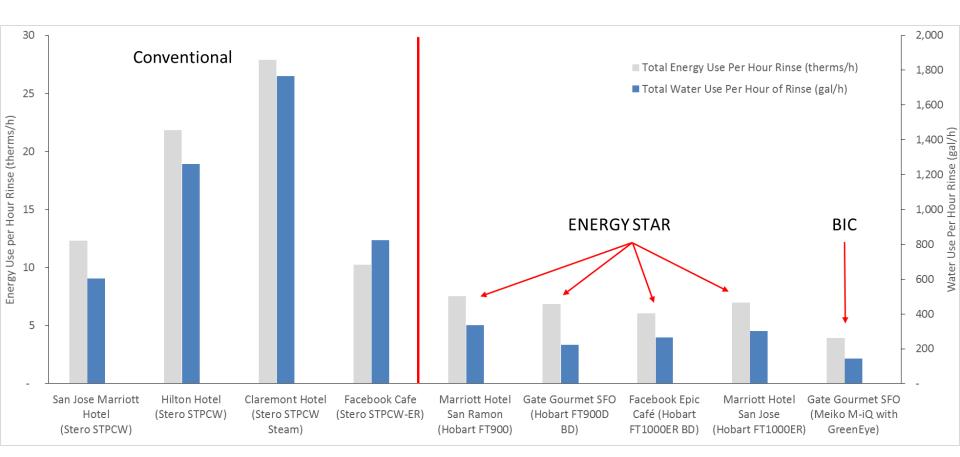
Answer: Conventional units use 124% more water than spec High efficiency units use 67% more

Water + Energy Use Per Hour Rinse

- Massive savings when operating high-efficiency conveyors versus conventional models
- Best-in-class unit saved over 50% of water and energy use versus highefficiency units

	Rated Rinse (gph)	Total Water Use Per Hour of Rinse (gph)	Water Savings vs. Low Efficiency	Total Energy Use Per Hour of Rinse (Btu/h)	Energy Savings vs. Low Efficiency
AVG. Low Eff. Rack (9)	275	663		962,000	
AVG. High Eff. Rack (3)	132	304	54%	592,000	38%
AVG. Best In Class Rack (1)	78	135	80%	351,000	64%

Water + Energy Use Per Hour Rinse


- Even larger savings measured with high-efficiency and best-inclass flight-conveyors!
- Best-in-class unit saved over 50% of water and energy use versus high-efficiency units

	Rated Rinse (gph)	Total Water Use Per Hour of Rinse (gph)	Water Savings vs. Low Efficiency	Total Energy Use Per Hour of Rinse (Btu/h)	Energy Savings vs. Low Efficiency
AVG. Low Eff. Flight (4)	277	1114		1,807,000	
AVG. High Eff. Flight (4)	85	282	75%	685,000	62%
AVG. Best In Class Flight (1)	87	143	87%	393,000	78%

Water + Energy Use Per Hour Rinse

Can clearly see the savings opportunity for replacement
 Additional testing of Best-In-Class Units needed

Rinse Flow Rate Should No Longer be the Default Efficiency Parameter

- With all 22 units tested, the rated rinse flow rate accounted for 35% of total use
- With best-in-class, rated rinse accounted for 59% of total use
- Incentive, standards and recognition programs (ENERGY STAR[®], LEED, ASHRAE 189.1) need to take a more comprehensive approach

Conveyor Type	Specified Rinse Flow Rate (gph)	Water Use Per Hour of Rinse Operation (gph)	Rinse Divided by Real World Water Use
Conventional Rack	275	663	41%
High-Efficiency Rack	132	304	43%
Best-In-Class Rack	78	135	58%
Conventional Flight	277	1114	25%
High-Efficiency Flight	85	282	30%
Best-In-Class Flight	87	143	61%

Reasons for the Disparity

- Rated rinse doesn't account for routine tank fill operations
- Overspray from washing large back of the house items, especially flat wares such as sheet pans and cutting boards was the leading cause of water waste
- 44" and 66" rack conveyors are prone to overspray due to the small separation between tanks
 - Leaving the tank drain open or debris stuck in valve were the second leading cause of waste
 - Dishwasher components fail and maintenance is not completed

Recommendations for Integration

Long term solution: Built-in permanent electricity and water submeters, data logging and wireless transfer capability

Helps dishwashers to maintain savings throughout life:

- Provides water + energy use and operating time info
 - Easy benchmarking of machine and staff operations
- Smart dishwasher overcomes operator error
 - Can't rinse with drain open
 - Auto clean and delime settings
 - Green-eye technology, active tank filtering system

Meter Your Existing Dishwasher's Water Use

Inexpensive (\$500-\$1000)

- Identify operating behaviors and train staff accordingly
- Identify maintenance shortcomings and identify solutions
- Set water, energy and detergent use benchmarks for operation, able to recheck periodically
- Support custom water and energy rebate process
- Have a business-case for replacement project "shovel ready" for when the opportunity arises

Smart Metering Available

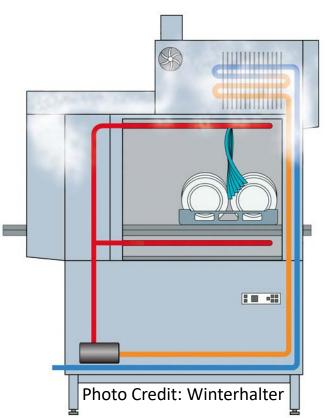
Current utility water metering practice

- Provides water + energy use and operating time info
- Water use data is typically provided in one or two month intervals
 - This is too low of a resolution

Low cost (\$350) smart metering is available!

- 5-min interval metering using 3G cellular
- 🔨 10-year plan
- Data stored on server for easy download
- Leak detection

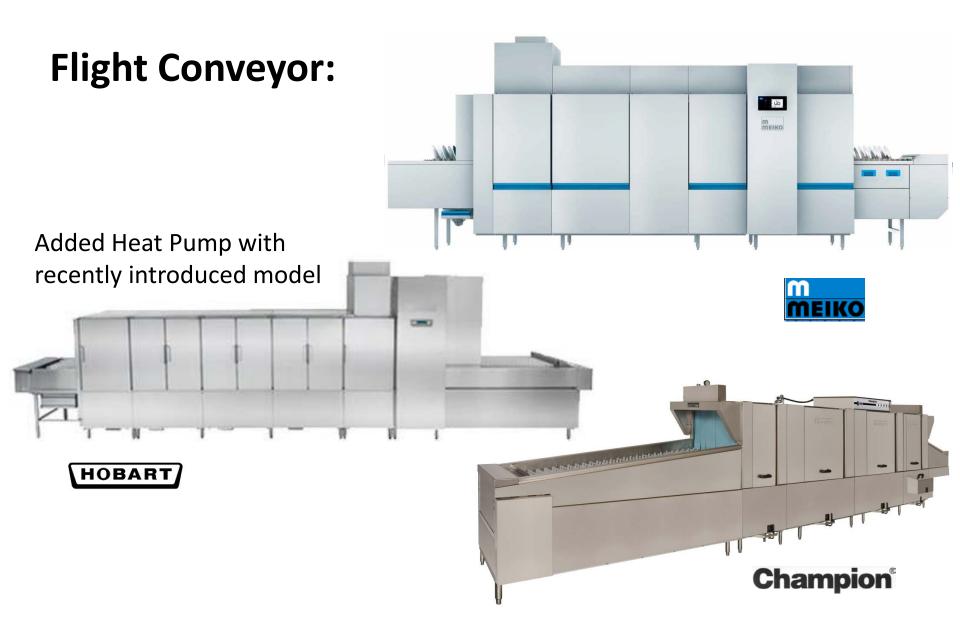
Innov8 Smart Register


Advanced Single-Jet Technology

High-Temperature Dishwashers with Heat Recovery Can Save Even More Energy


- Exhaust-air heat recovery (EAHR) preheats incoming cold water saving energy at the water heater.
- Cold water passes through copper pipes while a fan extracts steam and forces it through thin aluminum plates.
 The steam condenses on the cold fins and the latent heat is transferred to the cold incoming water.
- The cold supply water at a minimum of 50°F can be preheated to 110-130°F before reaching the booster.

Utilizing Exhaust-Air Heat Recovery


- In door-type machines, EAHR may eliminate the need for dedicated exhaust ventilation system.
- Heat pumps can be utilized as a second level of heat recovery to additionally increase the temperature of preheated water.
- In rack and flight conveyors the addition of a heat pump for dehumidification is required to be ventless.

Exhaust-Air Temperature

without EAHR	110 to 130°F
with EAHR	70 to 80°F
and Heat Pump	60 to 70°F

EAHR Dishwashers Available in the U.S.

Overcoming Distortions in the Market

Operators need unbiased advise to overcome knowledge gap:

- Frequently, the decision making process for replacing an older dishwasher involves comparing multiple manufacturer's estimated savings claims based on rated rinse
- When comparing several units that are all ENERGY STAR certified at similar rinse flow rates, its easy to assume that the units have similar operating costs
- Decision making get refined to simply comparing the purchase and install cost quotes along with marketing claims
- Deemed or custom water and energy rebates by the utility are not typically factored in, nor is 1st-year cost or 10th-year cost (life-cycle cost) calculations
- Operators can easily select a unit that looks good on paper but doesn't deliver in operating savings over its useful life

Solutions to Overcome Knowledge Gap

- Development of advanced life-cycle cost calculators
- Refinement of custom rebates that would require the installation of permanent water meters to sub-meter use
- 3rd-party unbiased retro-commissioning and dishwasher replacement program funded by joint water and energy utilities
 - Development and circulation of design guides and detailed case studies

Dishmachine Life Cycle Cost Calculator About | How To Use | Definitions

Us	er In	puts			
	ſ	User Input Dishmachine		Base Efficiency Dishmachine	ENERGY STAR® Dishmachine
Dishmachine Performance (Based on ASTM Standard Te	est Meth	ods F1696 &	F1920		
Dishmachine Type (Select from Box at Right)	Door	Door Type 🔹		Door Tγpe	Door Type
Low or High Temperature (Select from Box at Right)	High	High Temperature		High Temperature	High Temperature
Gallons per Rack (gal/rack)				1.10	0.89
Dishmachine Usage					
Racks per Day (racks/day)				141	141
Operating Days per Year (d/year)				365	365
Water Heating System					
Water Heater Type (Select from Box at Right)	Std E	Efficiency Gas	•	Std Efficiency Gas	Std Efficiency Gas
Water Heating System Efficiency (%)		68.0		68.0	68.0
Dishmachine Supply Temperature (°F)		140		140	140
Dishmachine Booster Heater					
Booster Heater Type (Select from Box at Right)	Elect	ric	•	Electric	Electric
Booster Heater Efficiency (%)		95.0		95.0	95.0
Utility Cost and Lifespan					
Choose State (Optional)		CA 🔻		CA	CA
Electric Cost per kWh (\$/kWh)		0.1394		0.1394	0.1394
Electric Demand Charge per kW (\$/kW)		0.00		0.00	0.00
Gas Cost per Therm (\$/therm)		0.884		0.884	0.884
Water / Sewer Cost per CCF (100 ft ³)		7.00	_	7.00	7.00
Lifespan of Dishmachine in Years (years)		12.0		12.0	12.0
Discount Rate (%/year)		0.00	_	0.00	0.00
			Calcul	atel Re	set Fields
App	u al D	esults			
Annual Electric Energy Consumption (kWh)		esuits	_		
	_				
Annual Gas Energy Consumption (Therms)	_				
Annual Water Consumption (gal)			_		
Annual Electric Energy Cost	4		_	\$	\$
Annual Gas Energy Cost	4			\$	\$
					*
Annual Water Cost	4	2		\$	\$
Annual Water Cost Total Annual Utility Cost	4			\$	\$
	4	;	ptior	\$	
Total Annual Utility Cost	nal C	;	ptior	\$	
Total Annual Utility Cost Input Additio	nal C	osts (O	ptior	\$ ial)	\$
Total Annual Utility Cost Input Addition Maintenance Costs per Year Initial Cost of Dishmachine	nal C	osts (O	ption	\$ ial) \$0	\$
Total Annual Utility Cost Input Addition Maintenance Costs per Year Initial Cost of Dishmachine	nal C	osts (O o o c esults	ption	\$ ial) \$0	\$
Total Annual Utility Cost Input Addition Maintenance Costs per Year Initial Cost of Dishmachine Lifett	nal C	osts (O) 0 0 Cesults	ption	\$ aal) \$0 \$0	\$ \$0 \$0
Total Annual Utility Cost Input Additio Maintenance Costs per Year Initial Cost of Dishmachine Lifetime Energy Cost	ime R	osts (O) 0 0 esults	ption	\$ sol \$0 \$ \$	\$ \$0 \$0 \$

In Closing...

Savings is only achievable in the sanitation room through a combination of practices:

- Specify properly sized and efficient dishwashers and pre-rinse equipment
- Add permanent submetering to properly commission equipment and for benchmarking
- Continuous training program for staff
- Experienced maintenance staff

Best-in-class dishwashers are worth the additional investment and additional incentive!

Low cost wireless submetering now available offering 5-min interval metering using 3G cellular network

Or we can Maintain the Status Quo

Questions?

Amin Delagah

Project/Research Engineer PG&E Food Service Technology Center adelagah@frontierenergy.com

Thanks for Listening!