This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Evaluating the Costs and Benefits of Single-Family Package Graywater Systems

Bill Christiansen, Project manager, AWE Bill Gauley, P.Eng., Gauley Associates Ltd. A VOICE AND A PLATFORM PROMOTING THE EFFICIENT AND SUSTAINABLE USE OF WATER

Residential Graywater

 Very few residential water uses require potable water (drinking, cooking, etc.)

Alliance

r Water Efficiency

- Others especially toilet flushing and landscape irrigation – do not require potable water
- In fact, makes little sense to use "cleanest water on earth" to flush your toilet or water your lawn

But:

- 1. Virtually all homes in N.A. have a ready source & system for potable water
 - Currently have source but not system for graywater
- 2. Potable water is still very inexpensive
- 3. Some preference to "err on side of caution"

Project Background

- Project initiated by AWE Water Efficiency Research Committee because...
- Utilities under increasing pressure to incentivize singlefamily package graywater systems – but facing mixed messages
- Project focus specifically on costs & benefits of SF systems (not technical or design details)
- Funded by the California Water Efficient Products Initiative and Portland Water Bureau

Project Approach

- Identify main types of SF package graywater systems used in USA and Canada
- Calculate maximum savings
- Research expected water savings
- Review benefits and costs
- Identify/describe important considerations

Main Types of Single-Family Systems

United States (typically)

- Graywater used for landscape irrigation
 - Laundry to landscape (L2L)
 - Branched drain
 - Pumped systems

Canada (typically)

Pumped graywater used for toilet flushing

Graywater Sources

Laundry to Landscape

Clothes washer

Branched Drain

Showers, lavatory sinks

Pumped System (landscape)

Showers, clothes washer, lavatory sinks

Pumped System (toilets)

 Showers (and possibly lavatory sinks, though contribution is minimal and not required) Alliance Water

Efficiency

Toilet Systems - Water Savings

- Graywater production and toilet demand relatively constant, so easy to calculate <u>maximum theoretical</u> <u>savings for typical single-family home</u>
- Theory = 6,167 gal/home/yr
 - 2016 REUS = 2.64 pph & 5.0 fcd
 - 2.64 pph x 5.0 fcd x 1.28 gal/flush x 365 days
 - Produce more than enough graywater from showering to flush toilets on average day

Alliance

r Water Efficiency

- Observed savings in 2 field studies is lower
 - 3,944 & 4,226 gallons/home/year (based on 2.64 pph)
 - Some potable water make-up water
 - Field savings may increase as systems improve

Water Savings - Landscape Systems

- Lack of independent 3rd-party field study results
- Highly variable irrigation demands / savings
 - Some homes had an <u>increase</u> in water consumption following installation of graywater system
- Seasonal variation
- Annual variation
- Difficult to quantify savings because...

Graywater production ≠ Potable water savings

Graywater Production *≠* **Potable Savings**

- Applying graywater to landscape that does not require irrigation (e.g., after rain event)
- Applying more graywater than needed for irrigation
- Irrigating plants or turf area that was not originally (pregraywater system) irrigated
- Planting new trees or flower beds to receive graywater

Graywater Production *≠* **Potable Savings**

 Graywater-related savings can only be quantified by measuring reduction in customer potable water demands

Need to have PRE vs. POST demand rates AND

Need to use both Study & Control groups because of variability in weather and, therefore, variability in irrigation demands

Currently not many independent field studies available!

Graywater-Related Savings

- 2016 REUS (2.64 pph, installed base) identified:
 - 23 gal/day/home for clothes washing
 - 28 gal/day/home for showering
 - Contribution from lavatory faucet insignificant

Alliance

r Water Efficiency

- Maximum Theoretical Savings for a Typical 2.64 pph Single-Family Home
 - L2L = 23 gal/home/day (8,395 gal/yr)
 - Branched drain = 28 gal/home/day (10,220 gal/yr)
 - Pumped system = 51 gal/home/day (18,615 gal/yr)
- Note: max potential savings will decline as fixtures become more efficient

Graywater-Related Savings for other pph

- 2016 REUS (2.64 pph):
 - 8.7 gcd for clothes washing
 - 10.6 gcd for showering
 - 19.3 gcd from clothes washer + shower
- Maximum Theoretical Savings
 - L2L = 8.7 gcd x pph x 365 days/yr
 - Branched drain = 10.6 gcd x pph x 365 days/yr
 - Pumped system = 19.3 gcd x pph x 365 days/yr

Actual Savings < Maximum Savings

- EBMUD preliminary estimates, L2L systems save ~ 3,600 gal/yr, about 43% of max potential savings
 - Unlikely to offset 100% potable water each day
 - Graywater production may not align with irrigation demand
 - May not require irrigation every week (especially in northern communities)
- <u>At minimum</u>, water agencies should adjust maximum potential water savings based on length of their irrigation season, e.g.,
 - 12 month season = 100% potential savings
 - 9 month season = 75% of potential savings
 - 6 month season = 50% of potential savings

Example Savings Calculations

- Optimistically, assume all irrigation-based systems save 2/3 of max potential (66.7%)
 - Irrigation not required 365 days/year
 - Not offsetting 100% of potable water irrigation demand

Alliance

r Water Efficiency

- Graywater production not always aligning with demand
- Savings used in example calculations:
 - Laundry to Landscape ~ 5,600 gal/yr
 - Branched drain savings ~ 6,800 gal/yr
 - Pumped systems ~ 12,400 gal/yr

Water Rates

- 2014 Water and Wastewater Rate Survey
 - AWWA, Raftelis Financial Consultants, Inc.
- Table III-7: Typical 2014 residential monthly water bill and components
 - Avg. consumption of 7,375 gallons/home/mth
 - Avg. water bill of \$33.79 (\$13.20 fixed, \$21.87 variable)
 - Only use variable, so...
 - Save \$2.96 for every 1000 gallons of reduction

Wastewater Rates

- 2014 Water and Wastewater Rate Survey
 - AWWA, Raftelis Financial Consultants, Inc.
- Table III-10: Typical 2014 residential monthly wastewater bill and components
 - Again, only use variable costs, so...
 - Save \$4.12 for every 1000 gallons of reduction
- Total savings of \$7.08 per 1000 gallons of potable water reduction
 - Note: This is an example <u>use your own variable rates!</u>
 - Note: Some water agencies do not apply wastewater fees to irrigation or apply fixed fees

Toilet Systems – Costs & Savings

- Maximum Savings = 6,167 gal/yr
 - At \$10/thousand gallons volumetric price ~ \$62/yr
 - Net Savings = Gross Savings O&M
 - Chemicals and energy ~ \$1 per thousand gallons
 - Parts including pumps, filters, etc. ~ variable
 - Possible cost of annual backflow testing
 - Life-cycle ~ estimated as 15 to 25 years
 - Best Case Savings ~\$56/year (minus maintenance cost)
- Total system cost ≥ \$3,000 (variable)
- Payback ~ \$3,000 ÷ \$56/yr ~ 53 years
 - "right thing to do"
 - Iimited potable water supply / drought conditions
 - not typically installed to save customer money

Toilet Systems using High Rates

- Some utilities charge \$17 or more per 1000 gallons for water/sewer (retail rates)!
- Maximum Savings = 6,167 gal/yr
 - At \$17/thousand gallons volumetric price ~ \$105/yr
 - Operations cost ~ \$5/yr
 - Save ~\$100/year (minus any maintenance cost)
- Total system cost ≥ \$3,000 (variable)
- Payback ~ \$3,000 ÷ \$100/yr ~ 30 years

Landscape System – Savings

- Using volumetric water/sewer rate of \$10 per thousand gallons customers will save:
 - L2L = \$56 per year
 - Branched Drain = \$68 per year
 - Pumped = \$124 per year
- Little O&M with L2L or Branched Drain Systems
- Some level of O&M cost for Pumped Systems
- Note: at \$17 per 1000 gallons
 - L2L = \$95 per year
 - Branched Drain = \$116 per year
 - Pumped = \$211 per year

Costs - Landscape Systems

Depend on type of system/installation - wide range in costs!

Laundry to Landscape

- DIY \$120 to \$250
- Professional Installation \$750 to \$1,250
- **Branched Drain**
 - DIY ~ \$700
 - Professional ~ \$1,750
- Pumped System
 - DIY \$1,800 to \$2,300
 - Professional \$3,800 to \$10,000

Approximate Payback Periods

Laundry to Landscape

- DIY: 2.1 to 4.5 years
- Professional Installation: 13 to 22 years

Branched Drain

- DIY: 10 years
- Professional Installation: 26 years

Pumped System

- DIY: 14 to 18 years
- Professional Installation: ≥ 30 years

Payback Periods @ \$17 per 1000 gal

Laundry to Landscape

- DIY: 1.3 to 2.6 years
- Professional Installation: 7.9 to 13 years

Branched Drain

- DIY: 6 years
- Professional Installation: 15 years

Pumped System

- DIY: 8.5 to 11 years
- Professional Installation: ≥ 18 years

Findings

- Cost-effectiveness varies greatly depending on the potential for avoided costs (no surprise!)
- Systems are more beneficial if:
 - Water rates are very high
 - Ongoing shortage of potable water supply
 - Frequent short-term shortage of potable water supply (drought)

Alliance

Water

Efficiency

- Customer lives in area with long irrigation season
- System incorporated in new building vs. retrofit
- Customers with high occupancy rate (produce more graywater for toilet-based systems)
- Water utility has limited water supply or needs to expand water supply/treatment infrastructure

Important Considerations

- Ongoing O&M may be/likely required
- Lowest hanging fruit may still be conversion to more efficient fixtures and appliance

Alliance

Water

Efficiency

- Potable water savings ≠ graywater production/collection
- Timing of graywater production may not equal timing of demands, especially for irrigation systems (potentially seasonal savings)
- Possibly some unintended consequences related to reduced flows in building or community sewers
- Eliminating irrigation demand may be more beneficial than using graywater as source
- If graywater system has potable water back-up, may need backflow prevention device and potentially periodic inspection of the device.

Looking Forward

- Cost-effectiveness will be <u>negatively</u> affected change as operating costs increase
- Cost-effectiveness <u>will improve</u> as:
 - Water rates increase
 - System costs decrease with growing sales
 - System maintenance costs decrease as systems get more sophisticated

But – cost-effectiveness to customer <u>is not</u> the only reason to consider a graywater system!

Alliance for Water Efficiency

A VOICE AND A PLATFORM PROMOTING THE EFFICIENT AND SUSTAINABLE USE OF WATER

www.a4we.org

(773) 360-5100 CHICAGO