This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

THE ENERGY ANGLE ON THE WATER-ENERGY NEXUS FOR SYSTEM WATER LOSSES

OCTOBER 6, 2016

Amy Vickers & Associates, Inc. Water Planning, Policy, and Management

About the Northwest Energy Efficiency Alliance (NEEA)

- Founded in 1997
- Alliance of more than 140 Northwest utilities and energy efficiency organizations
- Represents more than 13 million consumers
- Dedicated to accelerating electric and gas energy efficiency through market transformation

Examples of product acceleration

- Heat pump water heaters
- ENERGY STAR[®] and Next Step Forward Homes
- 80 PLUS Computers
- 25 intensity Challenge
- Industrial Energy Efficiency Alliance

Seventh Plan Resource Portfolio

Average resource development across all 800 futures tested in the Regional Portfolio Model. Actual development, particularly of non-energy efficiency resources, will depend on actual future conditions.

watersmart 2016

Water efficiency in the 7th Power Plan

ANLYS-9: Conduct research to improve understanding of electric savings in water and wastewater facilities from reduction in water use.

 Water conservation can save energy through reducing the embedded energy requirements for transporting and treating water as well as the non-energy benefit of using less water.

Conduct research to better understand savings opportunities for water-processing industries (water supply and wastewater).

Project objectives

 Help NEEA better understand standard industry practice regarding real water loss.

- Characterize the water sector in terms of water production, use, and real water losses;
- Estimate a range of potential gallons of potable water that could be saved, and associated electric energy and demand savings;
- Identify potential policies that could generate long-term reductions in real water losses.

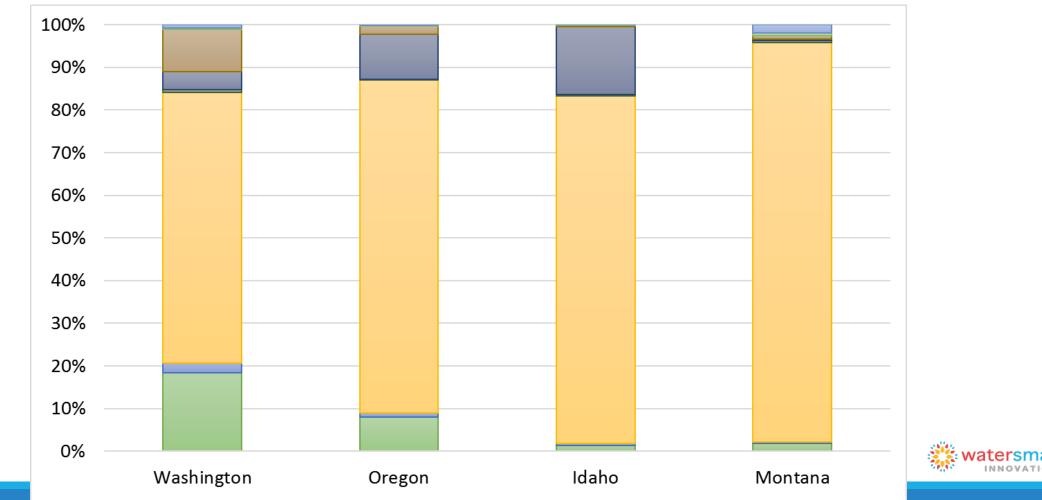
Project Approach

Water loss data sources

State	Agencies Contacted	Data Source(s)
Washington	Washington Dept. of Health, Office of Drinking Water	Water Use Efficiency Reporting (annual)
Oregon	Oregon Water Resources Department, Water Right Services Division	Select Municipal Water Management and Conservation Plans
Idaho	Idaho Department of Environmental Quality Idaho Rural Water Association Pacific Northwest Section AWWA	None
Montana	Montana Department of Environmental Quality Montana Rural Water Systems	None
		watersn

Embedded energy data sources

Organization	Data Source (Date)	Embedded Energy Range	
AWWA	Energy Index Development for Benchmarking Water and Wastewater Utilities (2007)	1,746 kWh/MG	
University of Texas, Dept. of Mechanical Engineering	Evaluating the energy consumed for water use in the United States (2012)	1,510-1,900 kWh/MG	
Regional Water Authority, Sacramento, California	Energy Intensity in the Sacramento Region (2015)	350 kWh/MG-2,400 kWh/MG	
Pacific Gas & Electric	Water System Leak Identification and Control Field Evaluation (2015)	378-10,720 kWh/MG	
California Public Utilities Commission	Water/Energy Nexus Program Study on Embedded Energy, Study 1 and Study 2 (2010)	1,189-3,786 kWh/MG	nart



State of the Market

Freshwater Withdrawals in the Pacific Northwest (USGS)

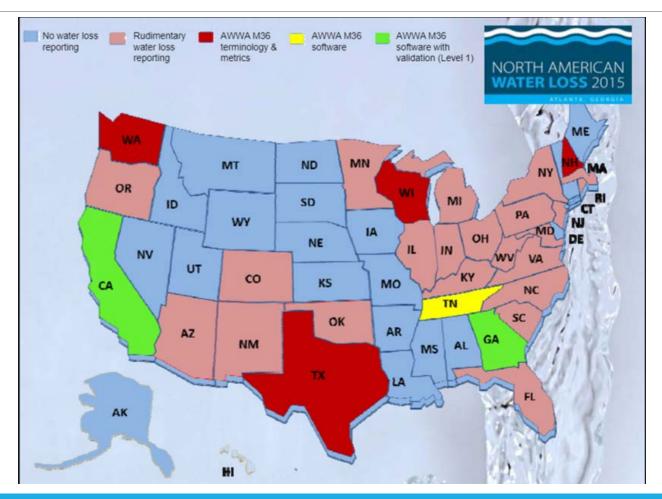
🔲 Public supply 🔲 Self-supplied domestic 📃 Irrigation 🔲 Livestock 🔲 Aquaculture 🔲 Self-supplied industrial 🔲 Mining 🔲 Thermoelectric power

neea

Public Supply Withdrawals, Surface and Ground Water, in the Pacific Northwest

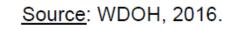
Table 4. Pacific Northwest public water supply withdrawals by surface and ground water, average million gallons per day (MGD), estimated 2015

	Projected Public Supply Withdrawals – Million Gallons per Day (MGD)							
State	Surface	Water	Groun	d Water	Total	Avg. GPCD		
Washington	468	48%	503	52%	971	159		
Oregon	442	79%	120	21%	562	166		
Idaho	29	11%	223	89%	252	210		
Montana Sources: USGS_20	76	52%	69	48%	144	196		


Sources: USGS, 2014; U.S. Census, 2015

Based on most recent USGS and US Census estimates

Current state of water loss policies and practices



Washington Department of Health Data

Table 5. Assessment of data validity from State of Washington Department of Health (WDOH) Water Use Efficiency (WUE) Worksheets, 2014 database

Reported Leakage (Real Losses), %	All WA Water Supply S	Systems	Total Produced, MG/Y	Authorized Consumption, MG/Y	System Leakage, MG/Y	Total Conn Count
≥0.1%	number	1,018	271,966	249,712	22,254	2,051,949
	percent	49.5%	79%	80%	86%	86%
≤0%	number	1,037	70,934	63,294	3,612	333,914
	percent	50.5%	20.7%	20.2%	14.0%	14.0%
	TOTAL ALL SYSTEMS	2,055	342,900	313,006	25,866	2,385,863

Point of comparison: State of Texas

Statewide Totals				Billed Metered	
445 Audits Submitted				737,001,477,726	
			Billed Consumption	82.4%	Revenue Water
			739,319,009,398	Billed Unmetered	739,319,009,398
			82.7%	2,317,531,672	82.7%
		Authorized Consumption		0.3%	
		786,187,331,984		Unbilled Metered	
		87.9%		20,388,773,256	
			Unbilled Consumption	2.3%	
			46,868,322,586	Unbilled Unmetered	
			5.2%	26,479,549,330	
	System Input Volume			0.3%	
	894,229,837,180			Unauthorized Consumption	
				2,579,657,252	Non-revenue Water
				0.3%	154,969,778,459
			Apparent Loss	Customer Meter Accuracy Loss	17.3%
			20,342,076,772	16,886,602,409	
			2.3%	1.9%	
		Water Loss		Systematic Data Handling Discrepency	
		108,110,833,152		884,071,861	
		12.1%		0.1%	
				Reported Breaks and Leaks	
				10,284,868,244	
			Real Loss	1.2%	
			87,795,656,568	Unreported Loss	
			9.8%	77,519,163,324	
				8.7%	

Quantitative Results

Estimated real water losses

Table 7. Real (Leakage) Water Losses in Public Water Supply Systems in Washington, Oregon, Idaho, and Montana, average million gallons per day (MGD), estimated 2015

	Groundwat	er (MGD)	Total Surface & Ground Water Systems (MGD)		
State	High (14.6%)	Average (9.8%)	Low (9.3%)	High (14.6%)	Average (9.8%)
Washington	73	49	90	142	95
Oregon	18	12	52	82	55
Idaho	33	22	23	37	25
Montana	10	7	13	21	14

Estimated recoverable losses

Table 10. Recoverable (Repairable) Real (Leakage) Water Losses in Public Water Supply Systems in Washington, Oregon, Idaho, and Montana, average million gallons per day (MGD, estimated 2015

	Groundv	vater (MGD)		urface & Gro Systems (M0	
State	High (70%) Average (53%)		Low (35%)	High (70%)	Average (53%)
Washington	51	26	32	99	50
Oregon	12	6	18	57	29
Idaho	23	12	8	26	13
Montana	7	4	5	15	7

Embedded energy data

Table 8. Estimated Embedded Energy levels for California water utilities

		kWh/MG					
Systems	Average	Minimum	25th %	75th %	Maximum	Count	
Groundwater	2,832	940	1,350	3,164	7,066	13	
Surface Water	2,370	350	1,000	2,633	10,720	15	
Surface Water							
(purchased)	1,833	1,200			2,300	3	
Unknown	2,674	1,040			3,786	6	
Grand Total	2,538	350	1,200	3,164	10,720	37	

Sources: Talbot, 2015; PG&E, 2015; GEI/Navigant, 2010(a); GEI/Navigant, 2010(b).

Embedded energy - range

neea

Estimated energy efficiency potential (aMW) - Technical

Table 9. Embedded Energy levels for real water loss estimates in Pacific Northwest (Technical Potential), annual Average Megawatts (aMW), estimated 2015

	Groundwate	er (aMW)	Total Surface & Ground Water Systems (aMW)			
State	High (75th)	Average	Low (25th)	High (75th)	Average	
Washington	9.7	5.8	4.5	18.7	10.1	
Oregon	2.3	1.4	2.6	10.8	5.8	
Idaho	4.3	2.6	1.2	4.9	2.6	
Montana	1.3	0.8	0.7	2.8	1.5	
TOTAL	17.6	10.6	9.0	37.1	20.0	

<u>Remember</u>:

looking for more than 4,000 Average MW by 2035

Estimated energy efficiency potential (aMW) - Achievable

Table 11. Embedded Energy associated with recoverable losses (Achievable Potential), annual Average Megawatts (aMW), estimated 2015

	Groundwa	iter (aMW)	Total Surface & Ground Water Systems (aMW)		
State	High (75th)	Average	Low (25th)	High (75th)	Average
Washington	6.8	3.1	1.6	13.1	5.3
Oregon	1.6	0.7	<mark>0.9</mark>	7.6	3.1
Idaho	3.0	1.4	0.4	3.4	1.4
Montana	0.9	0.4	0.2	1.9	0.8
TOTAL	12.3	5.6	3.1	26.0	10.6

Conclusions

Potential too low to merit further action

- Based upon available data, the achievable energy efficiency potential is 10.6 aMW.
- Data validity studies on water loss audits suggests that this is an underestimate of the achievable potential.
- Given the size of the energy efficiency potential, real water loss reduction in municipal / community water systems does not merit focus for NEEA at this time.
- There are also concerns about freeridership will water systems reduce real water losses on their own, without energy efficiency program intervention?

Possible actions

 Publicize case studies across the region, and create a database of case studies on real water loss, recoverable water loss, and embedded energy values.

- Help the State of Washington communicate the costs and benefits of their data collection program to the water and energy utilities in the Pacific Northwest.
- •NEEA could work with its member utilities to promote more tightlycoupled energy and water efficiency services across the Region.
 - While this could start with water loss reduction initiatives at water utilities specifically, it could also be expanded to include bundled energy and water projects.

Additional research opportunities

Agriculture

- Irrigation is the dominant water end use in all states, and energy requirements for its use and associated with losses are unknown
- Energy efficiency potential associated with agriculture could be higher than for municipal

- Water and Energy Planning
 - Many of the alternative water supplies under consideration (e.g., reuse, desalination) are more energy-intensive than current supplies
 - What is the marginal energy and demand benefit to conservation over these supply alternatives?

MA	ARK REHLEY	JONATHAN KLEINMAN	AMY VICKERS	
	NIOR MANAGER,	PRESIDENT	PRESIDENT	
	CHNOLOGY/PRODUCT ANAGEMENT	AIQUEOUS	AMY VICKERS & ASSOCIATES, INC.	
MF	REHLEY@NEEA.ORG	JKLEINMAN@AIQUEOUS.COM	AVA-INC@AMYVICKERS.COI	N
\mathbb{W}	WW.NEEA.ORG	WWW. AIQUEOUS.COM	WWW.AMYVICKERS.COM	watersmart 2016

neea