This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Roadblocks to Effective Irrigation

Why we have trouble saving water?

Water Cost & Drought

- As of 2015 Average water cost approaching \$5.00 per 1,000 gallons in top 50 cities
- 2. Average 6% increase in 2015 in top 50 cities
- 3. 41% increase since 2010
- 4. Extreme/Exceptional Drought

Source: EPA WaterSense, Circle of Blue Water Survey, US Drought Monitor

Year	% of USA					
2000	4.15					
2001	5.12					
2002	16.08					
2003	17.86					
2004	12.55					
2005	3.19					
2006	7.93					
2007	8.63					
2008	3.45					
2009	2.34					
2010	0.44					
2011	18.50					
2012	17.20					
2013	14.63					
2014	12.70					
2015	11.82					
2016	5.16					

Water Matters More

"The amount that Americans pay for water is rising faster than U.S. inflation and faster than the amount paid to any other utility service — be it gas, electricity, or telephone charges..." Circle of Blue Survey

Impact of Water Waste Beyond the Water Expense

In other words.....

"Unless we account for how the irrigation system is managed over the long-term, we are wasting our time changing out irrigation equipment"

Smart Irrigation

Problem: Still Using Old Technology

Dumb still rules

90%+ of new controllers sold today are not "smart".

Waters only on a schedule

Non-smart controllers don't account for weather, plant type, soil or local conditions.

No remote access for urgent issues

Requires a trip, making it inefficient for responding to issues.

No flow

Water waste due to breaks accounts for 30-40% of loss

Problem: Mismanaged "Smart" Technology

Lack Maintenance Continuity High turn over of maintenance personnel and companies

"Smart" is turned off

Some studies estimate 80% of "smart" technology is disconnected or turned off

Lack of Compliance

Project water saving certification/design lacks long term verification of Smart technology compliance

Problem: Limited Visibility

It only comes out at night Irrigation typically takes place at night. Water waste often disappears by daylight

Unknown problems

Often sprinkler breaks go undiscovered for weeks

Solo management

Irrigation tech is only person who interacts with irrigation system regularly

6 Factors of Efficient Irrigation

 Use Weather/Soil-based Scheduling with Rain Shut-off Device
 Use Efficient Irrigation Sprinklers
 Monitor Flow
 Account for Soil Infiltration
 Remote Monitor and Control
 Regular Site Inspections

#1 Use Weather-based Scheduling with Rain Shut-off

Weather-based Run Times

Smart technology waters for actual plant need

Smart Control Typical Variables Needed

- Evapotranspiration
 Local Rain Collection
 Exposure
- 4. Sprinkler Application Rate
- 5. Soil Infiltration Rate
- 6. Slope
- 7. Plant Species

8. Root Zone Depth 9. Plant Maturity 10. Plant Density 11. Time of Year 12. Soil Compaction 13. ET Adjustment 14. Tree Canopy

Why "Smart" Controllers Fail

- Complicated technology and/or system set-up
- Data variables not accurate (ie....derived from catalog)
- No easy/quick way to adjust for site specific conditions
- Initial dramatic reduction in total water applied causes plant stress
- Set it and Forget it mentality

Impact of Water Restrictions on Smart Control

- Day of the Week and Time of Day restrictions cause users to turn "smart" off
- Few regulatory accommodations for smart users
- Treat symptoms rather than cause
 - Rotating nozzles helps with soil infiltration but causes 3x longer run times
 - Turfgrass removal replaces water-thirsty grass without addressing bad irrigation practices

What We Really Need

- Simple, easy-to-use and adjust weather or soil based irrigation scheduling
- Proper use of soil infiltration scheduling
- Water restrictions that maximize the use of existing smart technology not restrict it
- Accountability

#2 Use Efficient Irrigation Sprinklers

*

1

Efficient Irrigation Check Valves

Sprayhead and rotor check valves save water and prevents soil erosion from low-head drainage.

Efficient Irrigation Pressure Regulation

- Optimum pressure for sprayheads with standard nozzle is 30 PSI
 23% increase in PR from 30 - 50psi
- For every 10 PSI over the optimum you can waste 12-16%* to the air!

*Source: Bernoulli's Equation

Efficient Irrigation High Efficiency Nozzles

Popular Rotating Nozzle

Efficient Irrigation High Efficiency Nozzles

Standard MPR Nozzle

Drip irrigation can also waste a lot of water

- Proper irrigation scheduling is difficult at best
- Soil infiltration is a factor
- Drip is often unseen

EXAMPLE: 5 Gallon Shrub – 4-6 gallons/week

AVERAGE

- 60 min/cycle
- 4 days a week
- (2) 1 GPH emitters

(2) 1GPH x 60 min = 2 gallons x 4 days = 8 gallons

2 gallons wasted PER PLANT per week (25%)

Soil Wetted Area

Soil Type	Wetted Area at 1 GPH Diameter (feet)					
Sand	3.0 – 3.5					
Sandy loam	4.5 - 5.0					
Loam	5.0 - 6.0					
Clay loam	6.0 - 7.0					
Clay	7.0 – 8.0					

Source: Irrigation Association (2007)

Application Rate of In-line Emitter Tubing

A		
		Ø

SOIL TYPE	CLAY	LOAM	SAND
Emitter Discharge Rate	½ GPH	1 GPH	2 GPH
Emitter Spacing	24″	18″	12″
Nominal Line Spacing	20″	16″	14″
Application Rate	.24"/hr	.80″/hr	2.74"/hr
Time to Apply ¼″ 🧲	62 min	19 min	6 min

Source: Dura-Flo[™] PC Dripperline – NDS, Inc

Bottom Line with Drip

- Must use ET scheduling with proper Application Rate
 - Calculated with soil infiltration and wetted area
- Must cycle run times

#3 Monitor Flow

Monitor Flow 500 Site Audit

Weathermatic

Monitor Flow

ET vs Flow Sensing

- Water lost to multiple breaks can easily exceed the savings gained through weather-based scheduling
- Savings can easily double if both flow sensing and weather-based scheduling are used together

Flow Sensing Accuracy

Today's flow sensors are highly accurate and have a broader range that those available even 5 years ago

Size	Minimum GPM	Maximum GPM	Friction Loss at Max flow
1 inch flow sensor	0.86	52	0.25 psi
1 1/2 inch flow sensor	1.8	108	0.18 psi
2 inch flow sensor	2.8	170	0.15 psi

Monitor Flow Flow Sensing is a Necessity

		30				% of
		Min	Week	Month	Mar-	Seasonal
Size	GPM	cycle	- Peak	- Peak	Sep	Budget*
1 drip emitter on ¼" tubing	1	30	120	480	2,880	0.79%
1 inch break	25	750	3,000	12,000	72,000	19.86%
2 inch break	75	2,250	9,000	36,000	216,000	59.59%

* Per average ½ acre site

#4 Account for Soil Infiltration

Account for Soil Infiltration

CLAY LOAM SAND

Smart watering technology needs to apply water based on soil absorption...through "cycling" run times and allowing irrigation to "soak" as the water infiltrates into the soil

Soil Infiltration - Example LEED Silver Certified Hotel

- Five sprayhead zones
- Rotating nozzles
- Cool season turf
- Clay soil
- 21 degree slope
- Slopes to parking lot

Soil Infiltration - Example

Soil Type & Slope Matters!

Run time =

- 16 minutes
- 3 cycles a day
- 4 days a week

How much run time?

Soil Infiltration - Example Clay Soil Infiltration Rate

Degrees	Precipitation Rate										
	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
0	15'	12'	10'	9'	8'	7'	6'	5'	4'	3'	3'
1	12' 18"	9' 50"	8' 12"	7' 23"	6' 34"	5' 44"	4' 55"	4' 6"	3' 17"	2' 28"	2' 28"
2	11' 15"	9" 0"	7' 30"	6' 45"	6' 0"	5' 15"	4' 30"	3' 45"	3' 0"	2' 15"	2' 15"
3	10' 21"	8' 16"	6' 54"	6' 13"	5' 31"	4' 50"	4' 8"	3' 27"	2' 46"	2' 4"	2' 4"
4	9' 45"	7' 48"	6' 30"	5' 51"	5' 12"	4' 33"	3' 54"	3' 15"	2' 36"	1' 57"	1' 57"
5	9'	7' 12"	6' 0"	5' 0"	4' 48"	4' 12"	3' 36"	3' 0"	2' 24"	1' 48"	1' 48"
6	8' 33"	6' 50"	5' 42"	5' 8"	4' 34"	3' 59"	3' 25"	2' 51"	2' 17"	1' 43"	1' 43"
7	7' 57"	6' 21"	5' 18"	4' 46"	4' 14"	3' 43"	3' 11"	2' 39"	2' 7"	1' 35"	1' 35"
8	7' 30"	6' 0"	5' 0"	4' 0"	4' 0"	3' 30"	3' 0"	2' 30"	2'0"	1' 30"	1' 30"
9	7' 3"	5' 38"	4' 42"	4' 14"	3' 46"	3' 17"	2' 49"	2' 21"	1' 53"	1' 25"	1' 25"
10	6' 36"	5' 16"	4' 24"	3' 58"	3' 31"	3' 5"	2' 38"	2' 12"	1' 46"	1' 19"	1' 19"
11	6' 18"	5' 2"	4' 12"	3' 47"	3' 22"	2' 56"	2' 31"	2' 6"	1' 41"	1' 16"	1' 16"
12	5' 51"	4' 40"	3' 54"	3' 31"	3' 7"	2' 44"	2' 20"	1' 57"	1' 34"	1' 10"	1' 10"
13	5' 33"	4' 26"	3' 42"	3' 20"	2' 58"	2' 35"	2' 13"	1' 51"	1' 29"	1' 7"	1' 7"
14	5' 6"	4' 4"	3' 24"	3' 4"	2' 43"	2' 23"	2' 2"	1' 42"	1' 22"	1'1"	1'1"
15	4' 48"	3' 50"	3' 12"	2' 53"	2' 34"	2' 14"	1' 55"	1' 36"	1' 17"	0' 58"	0' 58"
16	4' 30"	3' 36"	3' 0"	2' 0"	2' 24"	2' 6"	1' 48"	1' 30"	1' 12"	0' 54"	0' 54"
17	4' 12"	3' 21"	2' 48"	2' 31"	2' 14"	1' 58"	1' 41"	1' 24"	1' 7"	0' 50"	0' 50"
18	3' 54"	3' /"	2' 36"	2' 20"	2' 5"	1' 49"	1' 34"	1' 18"	1' 2"	0' 47"	0' 47"
19	3' 36"	2' 52"	2' 24"	2' 10"	1' 55"	1' 41"	1' 26"	1' 12"	0' 58"	0' 43"	0' 43"
20	3' 18" -	2' 38"	2' 12"	1' 59"	1' 46"	1' 32"	1' 19"	1'6"	0' 53"	0' 40"	0' 40"
21	(3')	2' 24"	2' 0"	1'0"	1' 36"	1' 24"	1' 12"	1' 0"	0' 48"	0' 36"	0' 36"
22	2' 51"	2' 16"	1' 54"	1' 43"	1' 31"	1' 20"	1' 8"	0' 57"	0' 46"	0' 34"	0' 34"
23	2' 33"	2' 2"	1' 42"	1' 32"	1' 22"	1'11"	1' 1"	0' 51"	0' 41"	0' 31"	0' 31"
24	2' 24"	1' 55"	1' 36"	1' 26"	1' 17"	1'7"	0' 58"	0' 48"	0' 38"	0' 29"	0' 29"
25	2' 6"	1' 40"	1' 24"	1' 16"	1'7"	0' 59"	0' 50"	0' 42"	0' 34"	0' 25"	0' 25"

🗶 Weathermatic

Soil Infiltration - Example

Wasted Water

- Water cost = \$3.60 unit
- 13 minutes 3 times a day wasted
- 21,578 gallons/week
- 863,120 gallons/season
- \$4,200 year

Soil Infiltration - Example

Additional Cost Water Damage to Asphalt Parking Lot

Cost of asphalt repair: \$6.00 - \$12.00 sq ft

Soil Infiltration - Example Wasted Water - Parking Lot Damage

#5 Remote Monitor & Control

Why Remote Monitoring and Control

Night time operation

Irrigation typically takes place at night. Often sprinkler breaks go undiscovered for weeks

Regular sprinkler checks

Most systems are checked once a month at best (average is 8 weeks)

What you don't know DOES hurt you

- Smart is turned off - Large number of smart controllers are turned to standard mode

- Rain/freeze sensor is disconnected or turned off
- Alarms are active but no one is watching

Remote Monitor and Control

Remote access

Access from multiple internet connected devices saves time, fuel, labor, and enables a quick response

Remote Monitor and Control

Multiple Users

Visibility by multiple users insures system is monitored regularly and alarms are attended to quickly

Proactive notification

Automated system notification of alerts and alarms requiring user attention such as:

- High/Low flow alarm
- System off alert
- ET vs Standard changes alert
- Communication failure alarm

#6 Site Inspections

Regular Site Inspections

Excessive Runoff

Geyser

Broken Main

Broken Lateral

Broken Head

Dangerous Iced Parking Lot

Damage due to broken lateral

Hardscape Damage due to Runoff

Landscape & Hardscape Damage

Broken Head

Regular Site Inspections

Remote access and proactive communication from a controller doesn't give us a complete picture

Items typically found only during site inspection Smart irrigation cannot take the place of a good system inspection

- Sprinklers out of rotation or not rotating
- Sprinklers installed too low or too high
- Sprinklers tilted
- Sprinkler spraying building, tree, street, sign, etc..
- Mismatched sprinkler nozzles that cause dry spots

Regular Site Inspections

Documented Inspections

Regular documented sprinkler checks need to be part of any water conservation strategy

	Roberts De Just Auflaum Auflaum Auflaum Just San Just Just	NO DOMA NAMA Manana Manana Manana Manana Manana Manana			2010 201 202 202 202 202 202	u 2	analas Analas Nati Analas Analas Analas						
	1		я.	1 1	þ	В	n þ	ß	jı	9	þ	-	
	27 MI		-	berte		shuts days to	- 0.000 (F)		kanter sam og som fø	an a basi mbar a	tre de utanéce (B)		
1 1.0			-		Television and								
	1000 V 00	11	-				10.00	1			1.0		Contraction of the
	() et /	1.1	-		te la Ache tur b	factor that we	percently	1					ALC: NO
	(1)	-	~	+		1-10-00 Not 1		1					and the second
		**	-		and in terms to be	(Y	longe 14	1			.0		Man - zal
17	interesting	1 ar	-		1		6	1					
and the second sec	team to		-	bie?	anto in Section 1	Parate Barr In					14		- Article - Article
State of the second second	Table 101		2		and the local section			- 2					
the state	-												
State of the second second													California California
A Martin Martin													
	V.												
													and the second

6 Factors of Efficient Irrigation

 Use Weather/Soil-based Scheduling with Rain Shut-off Device
 Use Efficient Irrigation Sprinklers
 Monitor Flow
 Account for Soil Infiltration
 Remote Monitor and Control
 Regular Site Inspections

Summary Water Management Truths

Accounting for all 6 Factors

Irrigation systems are NOT likely to reach its water saving potential without accounting for the 6 essential ingredients outlined above

Water Savings Not the only Cost Factor

The water rate and water savings should NOT be sole factor in executing a sustainability program considering the non-water related savings in multiple budget areas: landscape, hardscape, and other O&M areas.

Water Damage can exceed Cost of Water

If a site has irrigation, the watering must be matched to the plant water requirement or risk damaging the site with cost of damages exceeding the water cost.

Summary Water Management Truths

Liability is a Factor

Risk mitigation is a critical consideration due to the potential liabilities (i.e. watering during a freeze)

Time is Money

Repairs must be identified and addressed timely.

Interested in Learning More? Weathermatic White Paper

The 6 things you need to do to save irrigation water in any landscape

With all the origidion water conservation training and education and development of innovative technology over the last decade, why do we as an industry continue to strongle with saving water?

Party Webb serv orbid or a loss October 2015 Parry Webb Weathermatic – Sales Manager parry.webb@weathermatic.com www.weathermatic.com www.smartlinknetwork.com

