This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

FINAL REPORT ON RESIDENTIAL GREYWATER REUSE PILOT STUDY

Carl Robb

Canplas Industries Ltd.

Madeleine Craig

Ryerson University

October 7, 2015

INTRODUCTION

- Madeleine Craig
 - Environmental Engineering, 2012
 - M.A.Sc. Building Science, 2015

- Carl Robb
 - Canplas Industries Ltd.

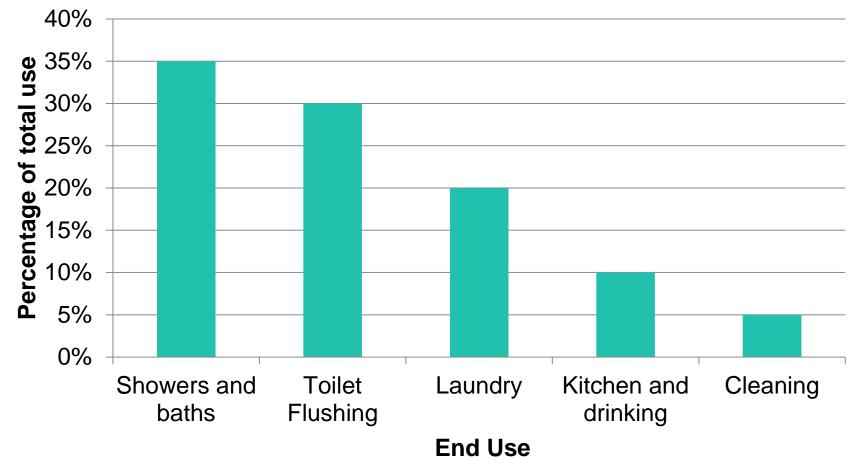
PRESENTATION OVERVIEW

- Background
- Thesis Work
- Application to Canplas' Prototype Recover System
- Key Findings & Conclusions
- Lessons Learned

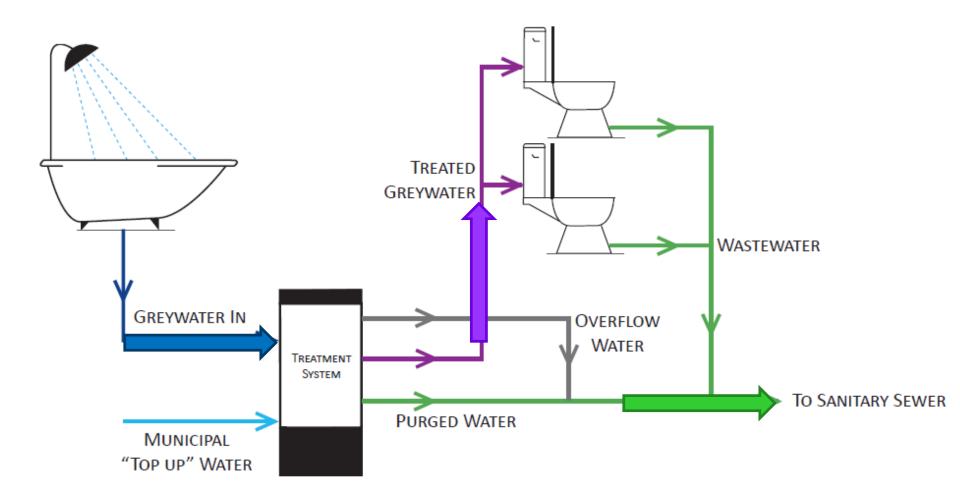
CURRENT WATER ISSUES

SOLUTIONS

1 Increase Water Rates


2 Reduce Demand

HSAX (2010)



Residential End Uses

Environment Canada (2013)

GREYWATER REUSE

THESIS RESEARCH

DEVELOPMENT OF METRICS

 common metrics through literature review of field studies & standards

APPLICATION TO FIELD STUDY

- Installed in 29 homes
- Tested at 23 homes
- August 2014 February 2015

SIGNIFICANT LITERATURE

SIGNIFICANT LITERATURE: ACADEMIC

CHRISTOVA-BOAL 1995 – Australia

- irrigation & toilet flushing at 4 houses
- systems designed for research

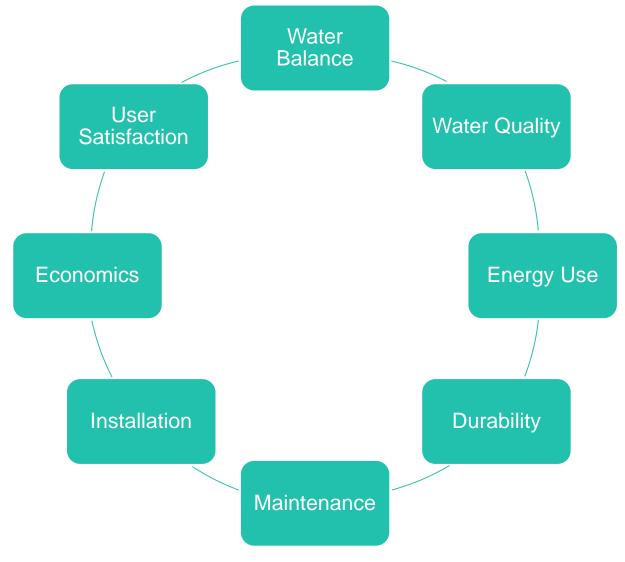
SHARVELLE ET AL. 2011-2014 - Colorado

- residence shower water for toilet flushing
- system designed for residence

DE LUCA 2012 - Guelph

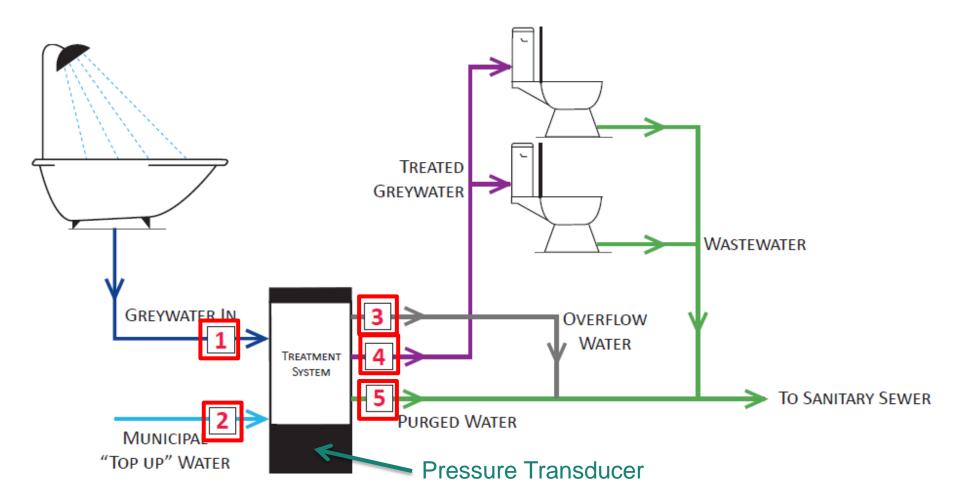
- performance in 5 houses
- 2 "off the shelf" greywater reuse systems

SIGNIFICANT LITERATURE : STANDARDS

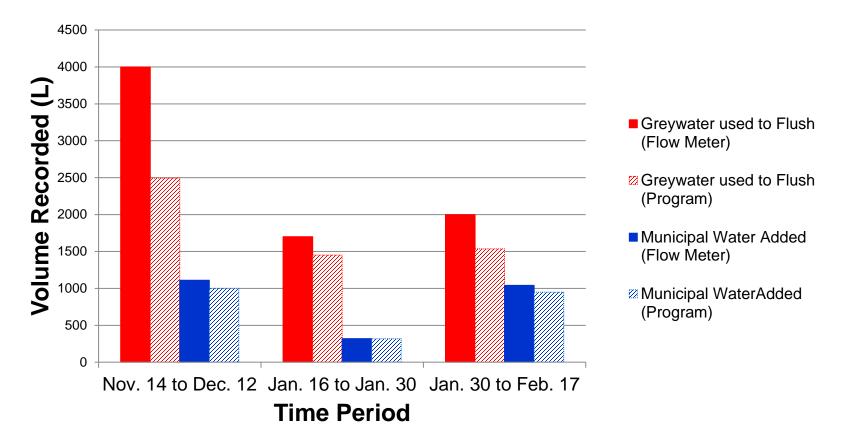

- NSF / ANSI 350 1 Standards
- CSA B128.1, .2 & .3 Standards

- Lab with simulated greywater

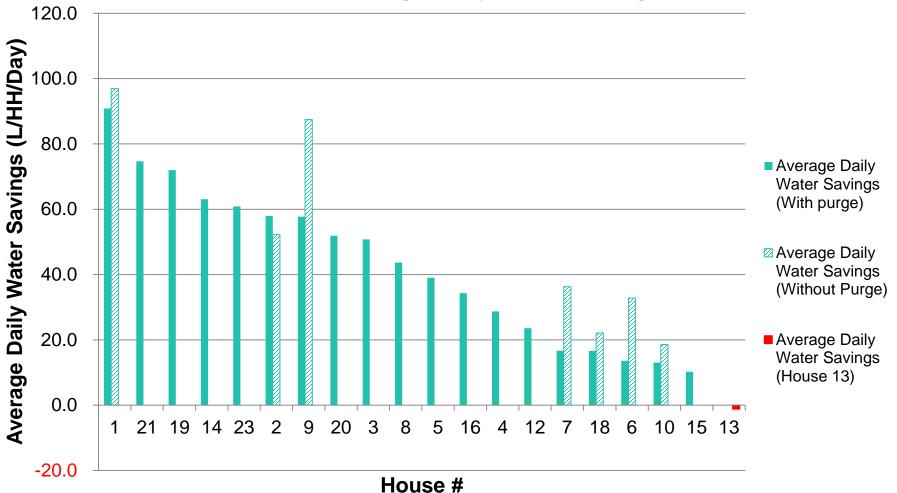
 Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet and Urinal Flushing
 Focus on water quality


Standard Testing Methodology

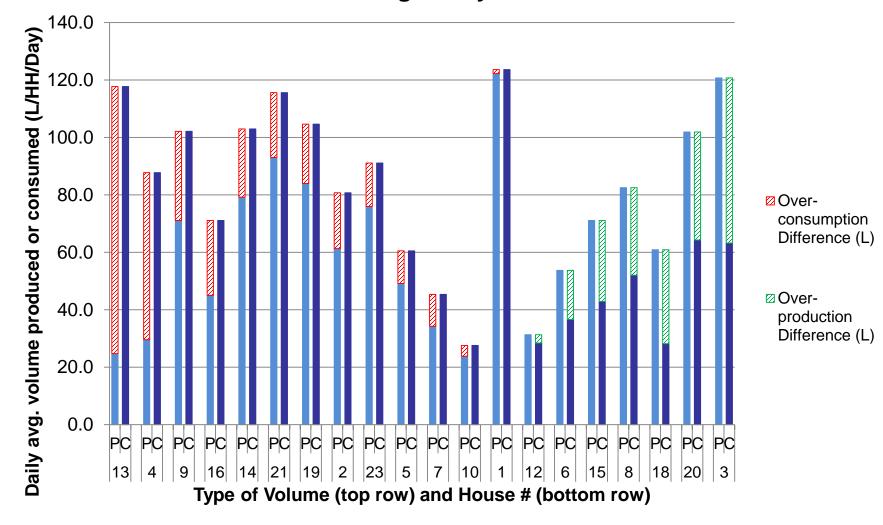
1 WATER BALANCE

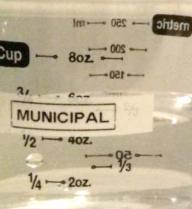

NUL)

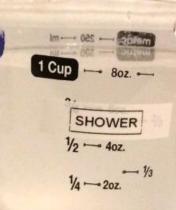
WATER BALANCE


WATER BALANCE VALIDATION

Comparison between Flow Meter and Program Readings


WATER BALANCE

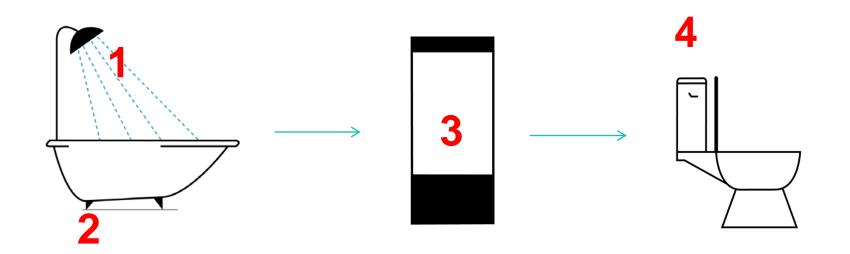

Average Daily Water Savings



WATER BALANCE

Average Daily Water Balance

400

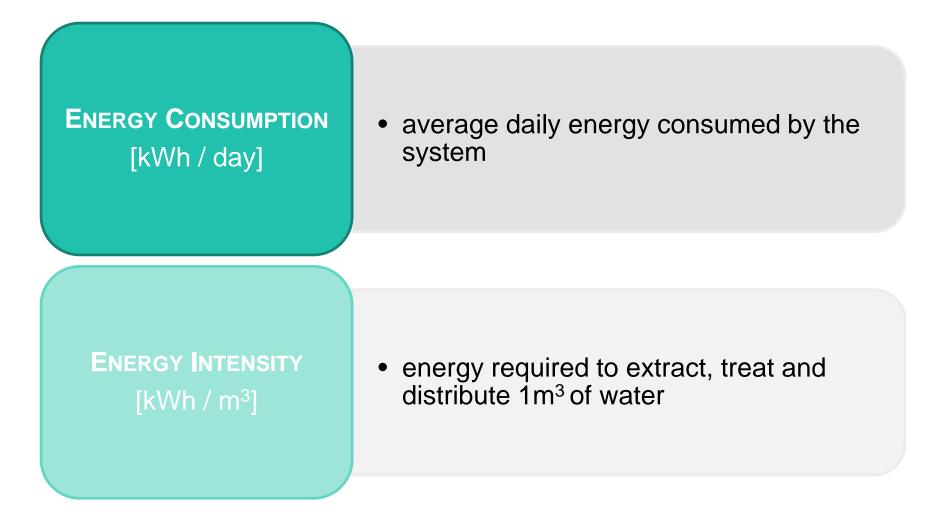

2 Cup -

1 Cup

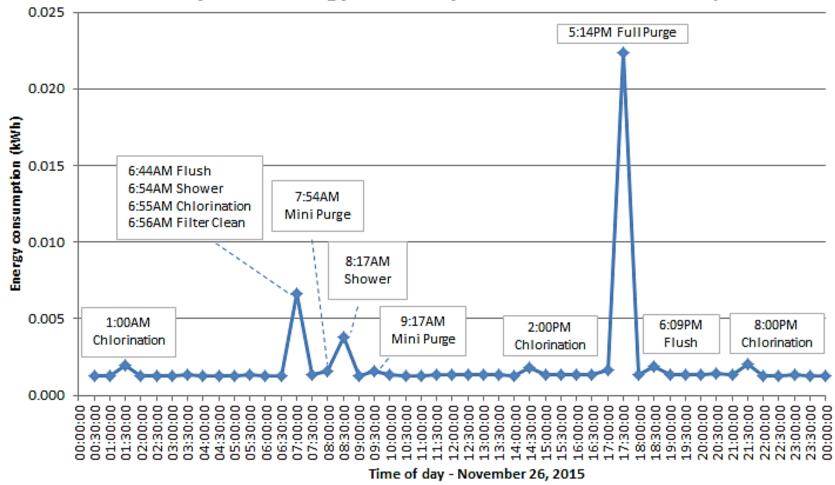
Betty Crockers 1/4 ---

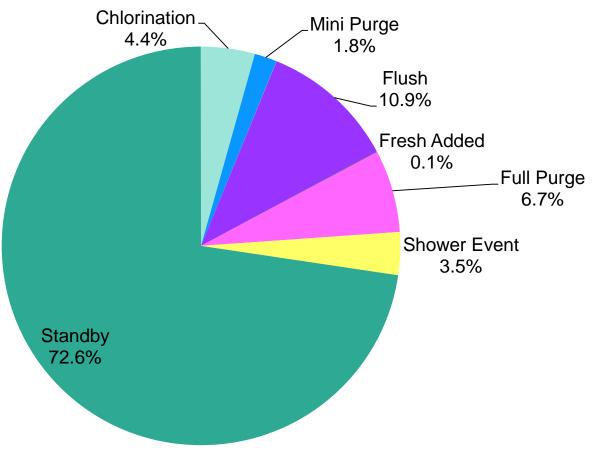
3/4-

1/2-


- Turbidity
- Hardness
- Odour
- Colour
- Total & Free Chlorine (or disinfectant)
- Temperature
- pH

- BOD₅
- COD
- Fecal Coliforms
- Total Coliforms


GREYWATER REUSE SYSTEM TANK	WITH PURGE		HEALTH CANADA GUIDELINES			
Parameter	Average	# of Samples	Max.	Average	Maximum	% met
BOD₅ (mg/L)	39	24	160	≤10	≤ 20	38%
COD (mg/L)	81	24	230			
Fecal Coliforms (CFU/100mL)	<10 ¹	24	>200 000	ND ⁴	≤ 200	92%
Total Coliforms (CFU/100mL)	<10 ¹	24	>200 000			
Free Chlorine (mg/L)	2.06	51	9.08			
Total Chlorine (mg/L)	3.05	76	13.75	2	: 0.5	77%
Turbidity (NTU)	16.19	91	58.10	≤2	≤5	20%
Colour (cu)	240.85	91	923			
Odour	Chlorine ²	93	60% ³			
рН	7.53	71	8.5			
Temperature (°C)	22.61	91	37.6			



House #	Meter	Energy Consumption (Average kWh/day)	Greywater used to Flush (m³)	Percentage water used to flush that is Municipal (%)	Energy Intensity (kWh/m³)
18	WeMo	0.070	3.360	44.96	2.763
12	Kill-a-watt	0.07	3.183	19.59	2.37
15	WeMo	0.084	4.336	96.75	2.354
10	Kill-a-watt	0.05	3.063	48.91	1.53
8	WeMo	0.078	4.186	20.10	1.422
6	Kill-a-watt	0.06	2.886	13.13	1.39
7	Kill-a-watt	0.04	4.359	50.54	1.17
20	WeMo	0.067	3.410	18.93	0.909
16	WeMo	0.064	7.027	50.65	0.885
1	Kill-a-watt	0.09	13.214	20.60	0.75
9	Kill-a-watt	0.07	11.126	34.41	0.68
14	WeMo	0.071	11.546	36.86	0.668
19	Kill-a-watt	0.07	3.007	31.61	0.61
Overa	II Average	0.069			1.346

H18 system energy consumption for November 26, 2015

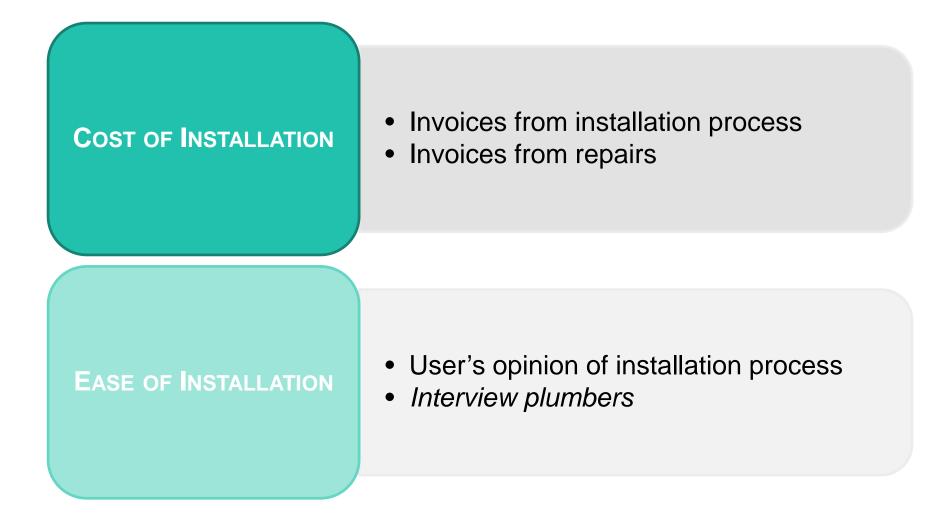
House 18 from November 12, 2014 to December 9, 2014.

4 DURABILITY

DURABILITY

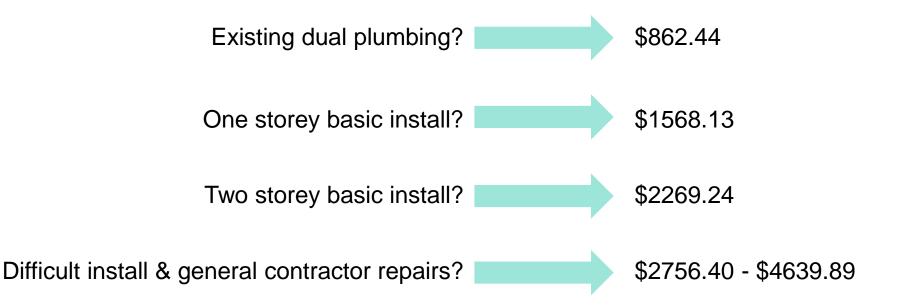
"when the system does not operate as intended, beyond routine maintenance"

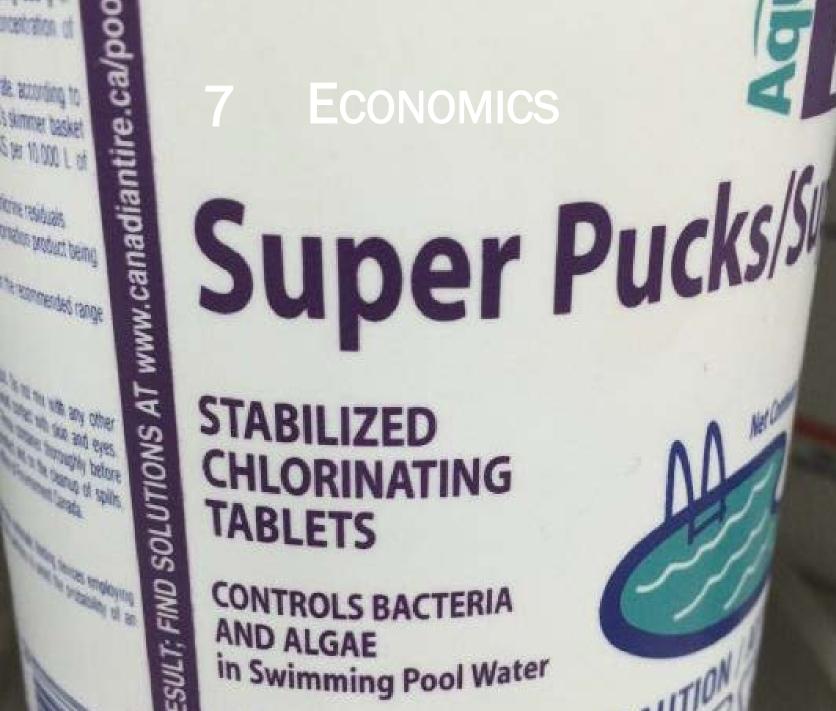
CHECKLIST OF TRAD	ITIONAL IS	SUES	USER SURVEY		
Failure	Failure Frequency		Did you experience any of the following technical issues or difficulties with your greywater reuse system?		
Film Buildup in toilet tank	16 of 20	80%	Film buildup in toilet tank	13	
Flashing notifications	17 of 23	74%	Noise nuisance	9	
Corrosion	13 of 23	57%	Unpleasant "greywater" odour at toilets Chlorine odour at toilets	8	
Incorrect time on screen	12 of 23	52%	Film buildup in toilet bowl	7	
Clogged greywater filter	11 of 22	50%	Unable to flush toilets (pump issues)	7	



MAINTENANCE

TOILET BOWLS	TOILET TANKS	Chlorine	Filter
 once/week "minor impact on toilets" 	 2-3 months odour & buildup 	• 2-3 months	 5 – 6 months (2 -3 months)
Very 7 Satisfied	5	0	1 Very Unsatisfied


INSTALLATION



INSTALLATION

BASIC INSTALL

- Roughing-in greywater collection & distribution lines
- Installing system

111

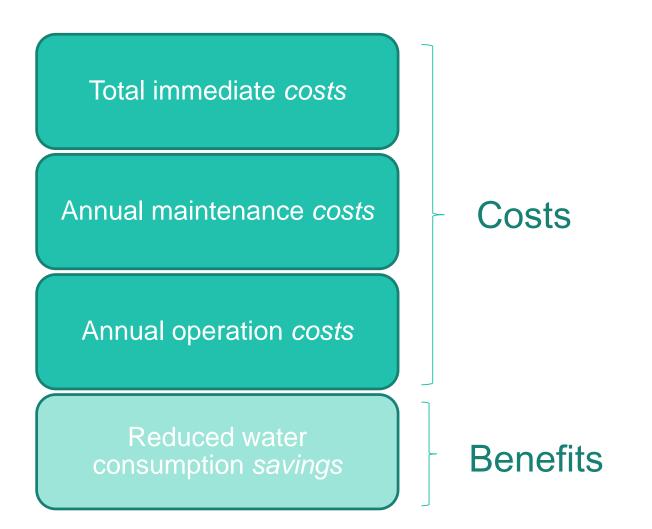
CONTROLS BACTERIA AND ALGAE in Swimming Pool Water

Strictro.

the according to

s skonner besker

She man Lat


andres andress teem

BURN SAFERBORNE F

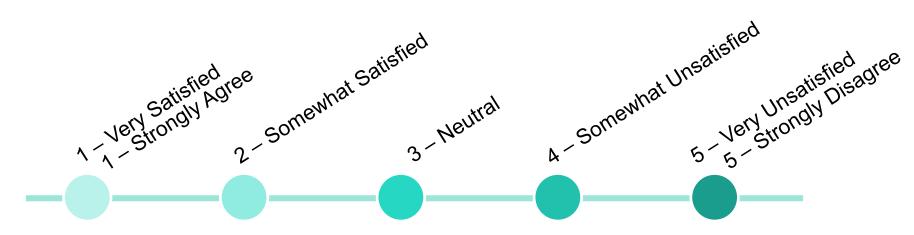
Listic MS day int an all

a sea out an out ares

THE PERSON

	BEST CASE	Average CASE	WORST CASE
Total immediate <i>costs</i>	\$2361.44	\$3677.71	\$7137.39
Annual maintenance costs	\$8.04	\$52.69	\$194.23
Annual operation costs	\$1.55	\$2.68	\$6.30
Reduced water consumption <i>savings</i>	\$157.05	\$29.95	\$7.61
ESTIMATED PAYBACK PERIOD	11	43	52

Environmental Awareness

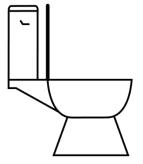

Maintenance

Technical Performance

Economics

Overall Satisfaction

M. Craig - WSI – October 2015


Overall performance of system?	1
Change in water bill?	Unsure, 2
Reliable water supply to flush toilets?	1
"I would recommend this greywater system to someone else"	1
Continue to have system in the house?	1

Key Findings & Conclusions

- Feasible and effective way to reduce domestic water demand
- Low energy consumption
- Water quality of "off the shelf" treatment is improving
- Less maintenance than before, but proper maintenance *must* be performed
- High installation costs → greywater reuse is applicable for areas with high water rates
- Generally satisfied users! ③

Further Research

- Effects of greywater reuse on flush valves
- Accurate collection & validation of water balance data
- Water consumption of different toilet designs

LESSONS LEARNED

- 10 day purge cycle seems to be optimum for water quality and water savings
- Recent updates to filter mechanism have eliminated calcium/soap scum fouling
- More frequent / short duration chlorination cycles is better
- 316 Marine Grade Stainless fasteners required where chlorine is present
- Allowing for sedimentation removal solved many flush valve issues

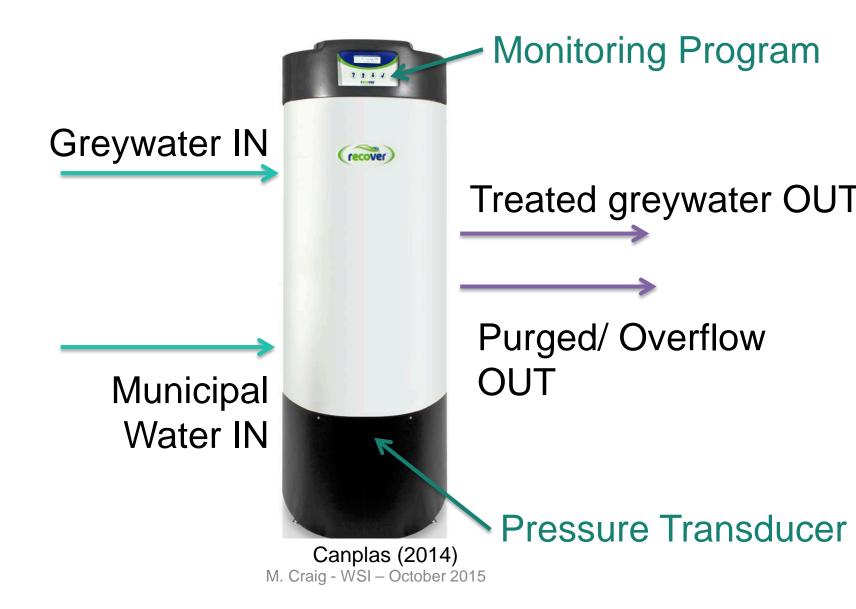
CONTINUATION: PRIORITY GREEN

Priority Green Clarington: Glen Pleasance

Completed Field Testing in New Homes 3:15pm Napa D

THANK YOU!

Madeleine Craig madeleine.craig@ryerson.ca


Carl Robb crobb@canplas.ca

HOUSEHOLD CHARACTERISTICS

• User Survey #1

METRIC	POTENTIALLY INFLUENCES
Age of Residents	Water quality
Time spent in the house	Water balance, energy use
	Water balance, water
Frequency of showering	quality
Number of residents	Water balance
Presence of water softener	Water quality
Location of showers and toilets	Energy use, installation
Personal care products	Water quality
Showering and toilet cleaning	Water quality
products	
Frequency of cleaning the shower and toilets	Water quality, maintenance

Additional Water Balance

Additional Water Balance

Day	Real Date	Event	Hour	Minute	am/pm	Quantity (L)	~Tank Balance(L)
		Full Purge	3	1	am	-19.375	2.000
		Fresh Added	3	3	am	9.750	11.75
		Gray Added	8	10	am	30.375	42.125
		Chlorinatio n	8	11	am	0.000	42.125
		Filter Clean	8	11	am	1.000	41.125
Sunda		Flush	8	23	am	-9.250	31.875
y	08/24/14	Flush	8	55	am	-5.875	26.000
		Flush	8	59	am	-13.125	12.875
		Mini Purge	9	10	am	0.000	12.875
		Flush	12	20	pm	-5.000	7.875
		Chlorinatio n	2	0	pm	0.000	7.875
		Flush M	/I. Cr <mark>a</mark> ig - \	VS1 49 0cto	ber DM 5	-4.125	3.750

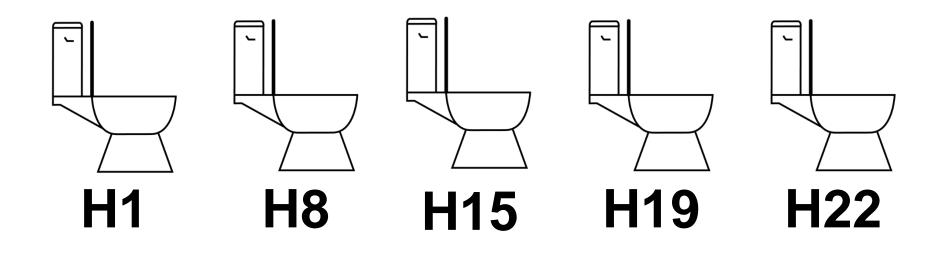
Additional Water Balance

AVERAGE DAILY WATER BALANCE

 Greywater production versus Greywater consumption AVERAGE DAILY WATER SAVINGS

 Water used to flush minus freshwater added

WATER BALANCE SUMMARY


	With Purge		No F	Purge
VOLUME	LHHD	LCD	LHHD	LCD
G REYWATER IN	65.8	18.8	-	-
MUNICIPAL "TOP UP" WATER	31.7	9.7	13.5	3.7
WATER USED TO	72.3	21.3	_	_
FLUSH TOILETS				
WATER	32.6	8.9	12.2	1.9
PURGED/EMPTIED	M. Craig - WSI – October 2015			

WATER QUALITY

GREYWATER REUSE		WITH PURGE NO PURGE				
SYSTEM TANK						
Demonster	Averag	# of		Averag	# of	D 4
Parameter	е	Samples	Max.	е	Samples	Max.
BOD ₅ (mg/L)	39	24	160	38	12	100
COD (mg/l)	81	24	230	88	12	250
Fecal Coliforms	<10 ¹	24	>200	<10 ¹	11	4 400
(CFU/100mL)			000			
Total Coliforms	<10 ¹	24	>200	<10 ¹	12	50 000
(CFU/100mL)			000			
Free Chlorine (mg/L)	2.06	51	9.08	2.01	13	5.13
Total Chlorine (mg/L)	3.05	76	13.75	2.81	13	7.91
Turbidity (NTU)	16.19	91	58.10	10.92	13	24.60
Colour (cu)	240.85	91	923	181.06	13	327
Odour	Chldrin	raig - 🎯 🏐 – Oc	tob &02%18 5	Chlorin	13	92%

Flush valve replacement

FILTER CLOGGING

STRESSED SITUATIONS

VACATIONS

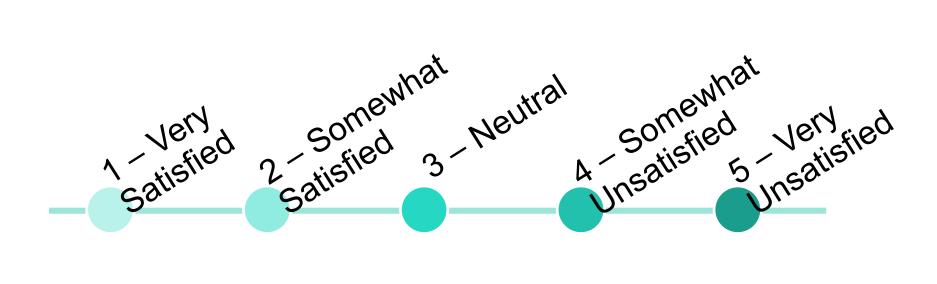
- Ideally would have recorded planned vacations before hand
- Only went in to vacation mode 2 of 5 times
 - Users turned off water
 - Program issues
- 6 users = very satisfied
- 2 users = somewhat satisfied
- 2 users = neutral
- 1 user = somewhat unsatisfied

POWER OUTAGE

- Battery in controller, but it never worked
- Generally the system would restart and function when the power came back on....but sometimes required a manual restart

MAINTENANCE

Log sheets • Toilets
 Chlorine
 User survey • Filter


Recommendations:

- $_{\circ}$ at the system and at toilet tanks
- $_{\circ}$ track for at least one full year
- tester should not perform any maintenance!

Total immediate costs	Capital costInstallation cost
Annual maintenance costs	 Disinfectant Filters Required backflow prevention testing
Annual operation costs	 Energy usage (kWh) Local energy rates (\$/kWh)
Reduced water consumption savings	 Water and wastewater savings (m³⁾ Local water and wastewater rates (\$/m³)

Scena Rio	К ЕВА ТЕ	INSTALLA TION	CHLORIN E REPLACE MENT	Ann Ual Test	Energ y Use	WATER SAVING S	Combi NED WATER RATES
Best	\$100 0	\$862.44	5 – 6 months	No fee	0.04 kWh/d ay	96.9 L/day	\$4.44/ m ³
A VERA GE	\$500	\$1677.7 1	2 – 3 months	\$35	0.077 kWh/d ay	26.0 L/day	\$3.15/ m ³
Wors T	No rebat e	\$4638.3 9	Monthly	\$150	0.18 kWh/d ay	10.3 L/day	\$2.03/ m ³

	BEST CASE	AVERAGE	WORST CASE
Incentive for 5 year payback	\$1351	CASE	X
Incentive for 10 year payback	\$236	X	X
Incentive for 20 year payback	\checkmark	\$3832	X

SILT IN SYSTEM AT HOUSE 22

M. Craig - WSI – October 2015

ENVIRONMENTAL AWARENESS

House #	Involved in Previous Study?	# of practiced water conservation methods	How did user get a system?	Primary reason for GW reuse?	Recycle in the home?
1	No	7	Approached by Canplas.	To use less fresh water.	3 - Neutral
4	Yes	5	Approached by Canplas.	To adopt innovative technology.	2 - Mostly everything
5	Yes	1	Home-builder recommended a system.	To adopt innovative technology.	3 - Neutral
6	Yes	5	Actively searched for a system.	To use less fresh water.	3 - Neutral
8	Yes	6	Moved in to home with a system.	To save money on water bills.	3 - Neutral
9	Yes	1	Home-builder recommended a system.	To save money on water bills.	2 - Mostly everything
10	Yes	5	Approached by Canplas.	To use less fresh water.	2 - Mostly everything
11	No	2	Moved in to home with a system.	To save money on water bills.	3 - Neutral
12	Yes	6	Moved in to home with a system.	To use less fresh water.	2 - Mostly everything
13	Yes	3	Other: Supplier/installer for Canplas	To use less fresh water.	1 - Everything
15	No	1	Approached by Copples	To save money on	1 Some things

GREYWATER VS. RAINWATER

Greywater

- Benefits
 - Consistent water supply

- Drawbacks
 - Requires more treatment than RW
 - Potential for more maintenance
 - Not seamless WQ yet

Rainwater

- Benefits
 - Cleaner water than GW (less treatment required)
 - More accepted by users (?)
- Drawbacks
 - Crosses building interior/exterior
 - Inconsistent water supply

SINGLE FAMILY VS MULTI-UNIT

- People are more likely to reuse if it's just their wastewater.
- Less transfer of germs, higher risk for Multi-unit
- Maintenance is on homeowners...good/or bad
- Financially more feasible at a bigger scale
 - Apartment buildings can be designed / retrofitted easier

REDUCED FLOW THROUGH WW PIPES

- Penn et al. (2013)
 - Modelled reduced flow and low-flush toilets
 - Not likely that greywater reuse will lead to blockage in existing sewers
 - Also allows sewers in new construction to be built with smaller diameters