This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

The unintended (and unplanned for!) consequences of water use efficiency

John Koeller, P.E. Koeller and Company www.map-testing.com

Mary Ann Dickinson
Alliance for Water Efficiency
www.a4we.org

Las Vegas, October 2015

30+ Years of Significant Reductions!!

TABLE 2-A. WATER CONSUMPTION BY WATER-USING PLUMBING PRODUCTS AND APPLIANCES – 1980 TO 2012

Water-using Fixture or Appliance	1980s Water Use	1990 Requirement	EPAct 1992 Requirement	2009 Baseline Plumbing Code	2012 'Green Code' Requirement	% Reduction in avg water use since 1980s
Residential Bathroom Lavatory Faucet	3.5+ gpm	2.5 gpm	2.2 gpm	2.2 gpm	1.5 gpm	57%
Showerhead	3.5+ gpm	3.5 gpm	2.5 gpm	2.5 gpm	2.0 gpm	43%
Toilet - Residential	5.0+ gpf	3.5 gpf	1.6 gpf	1.6 gpf	1.28 gpf	74%
Toilet - Commercial	5.0+ gpf	3.5 gpf	1.6 gpf	1.6 gpf	1.6 gpf ¹	68%
Urinal	1.5 to 3.0+ gpf	1.5 to 3.0 gpf	1.0 gpf	1.0 gpf	0.5 gpf	67%
Commercial Lavatory Faucet	3.5+ gpm	2.5 gpm	2.2 gpm	0.5 gpm	0.5 gpm	86%
Food Service Pre-rinse Spray Valve	5.0+ gpm	No requirement	1.6 gpm (EPAct 2005)	No requirement	1.3 gpm	74%
Residential Clothes Washer	51 gallons/load	No requirement	26 gallons/load (2012 standard)	No requirement	16 gallons/load	67%
Residential Dishwasher	14 gallons/ cycle	No requirement	6.5 gallons/cycle (2012 standard)	No requirement	5.0 gallons/cycle (ASHRAE S191P)	64%

gpm: gallons per minute gpf: gallons per flush

Timeline...

- 1940s sizing supply piping & drain systems
 - No significant code changes since
- 1990s 2000s
 - Increased water efficiency & water conservation
 - Result: Piecemeal system changes using 21st century...
 - High-efficiency fixtures & fittings
 - Process equipment
 - Appliances

What we have done...

21st Century Results

(of modifying a 1940s system)

- Dry drains & sewers
 - Blockages & clogs
 - Wastewater treatment issues
- User dissatisfaction
 - Long 'wait times' for hot water
- Public health & safety
 - Showers: potential thermal shock & scalding
 - Stagnant water: disappearing chlorine residual
- Increased maintenance
 - Nothing is "maintenance free"

'Starving' the Drains!

- Reduced liquids avail. to move waste in drainlines
- Commercial installations
 - Isolated bathrooms
 - —Long horizontal runs 1% slopes + dips & sags
 - —Non-water urinals, ultra low flow lav faucets (0.5 gpm)
 - Proliferation of other water-efficient technologies;
 medical, food service, industrial & comm'l processes
- Domestic installations
 - Reduced flow showerheads and faucets
 - Reduced volumes toilets and appliances
 - Graywater reuse systems potential to eliminate long duration flows by diverting waste water

'Starving' Residential Drainlines

- Graywater collection, treatment, reuse can remove significant volumes of water from the drain system
 - Clothes washers
 - Lavatory faucets
 - -Showers & baths

30% of all indoor use

 2005 study: HETs not a problem in residentialBUT, graywater systems MAY create a problem in the future

Residential Drainline Carry – Findings (2005)

Commercial Building Drainlines

- 2008: MaP issued a CAUTION statement
- 2009: Plumbing Efficiency Research Coalition (PERC) formed
 - IAPMO Int'l Assoc of Plumbing & Mech Officials
 - ICC International Code Council
 - PMI Plumbing Manufacturers International
 - PHCC Plumbing Heating Cooling Contractors Assoc
 - AWE Alliance for Water Efficiency
 - ASPE American Society of Plumbing Engrs (added in 2011)
- PERC Phase 1 findings
 - Paper, slope, & water volume are the determinants of waste transport in building drainlines
 - NOT type of toilet, flush curve, or trailing water (contrary to what you might have been told!)

Consequences – Municipal Systems

- Municipal sewer flows reduced
 - Stoppages require extra maintenance \$\$
 - Additional flushing of sewer mains required
- Dilution of waste stream (with additional water) being required at the inflow to the municipal wastewater treatment facility

On the water supply side...

 Over-sizing of water supply lines due to outdated demand estimate models

(remember the chart you saw at the beginning?)

- May result in:
 - Longer wait times for hot water to arrive at point of use
 - Lower velocities in pipes, less scouring action, possible increase of biofilm growth > more flushing of lines req'd
 - Concerns magnified in health care facilities
 - John Hopkins report regarding electronic faucets
 - ASPE led effort to investigate validity of Hopkins study

Public Health & Safety

- Showers scalding & thermal shock issues
 - ✓ No compensating valve in older homes (approx pre-1987)
 - ✓ Showerhead mismatched with compensating valve in newer installations; example...
 - ✓ 2.5 gpm rated compensating valves
 - ✓ 1.5-2.0 gpm rated showerheads
 - ✓ Water heaters set to dangerously low temperatures (120°F), breeding Legionella bacteria
 - Aerating showerheads

New York City Outbreak and Response

Conditions Common in Outbreaks

- Loss of disinfection coming into the building.
- Lack of familiarity with how water is processed in complex building water systems.
- Lack of effective microbiological controls.
- Lack of coordinated prevention efforts.

Most Legionnaire's disease deaths tied to plumbing systems, CDC says

 ⁻Used with permission from: Claressa Lucas, PhD

Centers for Disease Control and Prevention (CDC), Atlanta, GA

Division of Bacterial Diseases

 ⁻Environmental Legionella Isolation and Techniques Evaluation (ELITE) Certification Program Coordinator

Microbiologist involved in most US legionellosis outbreak investigations

⁻http://smartwaterleadership.com/CDC.aspx (June 2013)

Public Health & Safety - Buildings

- Legionella bacteria chlorine tolerant
- Legionnaires' disease in U.S.
 - 8,000 to 10,000 cases per year
 - 10%+ fatal
- Risk factors water flow/velocity, stagnation, scale & sediment, biofilms, temperature
- So...
 - Maintain domestic water heaters @ 140°F
 - Water to a faucet @ 122°F minimum

Public Health & Safety

- Stagnant water in large plumbing systems
 - ✓ Dead ends buildings & municipal systems
 - Leads to disappearing chlorine residual
 - Pathogen growth threatens public health
 - Requires more frequent system 'flushing'

The CUL-DE-SAC problem

The 'cul-de-sac problem'

- Many 'dead ends' & stagnant water
- Disappearing chlorine residual
- Requires more frequent mains flushing
 - ✓ Fire flows
 - Mains scouring & cleansing
- Water is 'wasted'
- Public's reactions to perceived 'waste' discourages their own conservation efforts

Summary – unintended consequences

- 'Dry Drains & sewers' starving for water
- Wastewater treatment dilution of inflows
- Public health increased flushing of water supply systems (buildings & municipal)
- Public safety shower dangers + Legionella
- Public perception of waste

Thank you...

John Koeller, P.E.
Koeller & Company – MaP Testing
Yorba Linda, California

Tel. (714) 777-2744 koeller@earthlink.net www.map-testing.com