This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Using the AWE Rate Model to Examine Drought Rates: The Benefit of Analyzing Scenarios

Ken Jenkins Interim Director of Drought Management & Conservation California Water Service

Mary Ann Dickinson President/CEO Alliance for Water Efficiency

AWE's Financing Sustainable Water

- Building Better Rates in an Uncertain World: A Handbook to explain key concepts, provide case studies and implementation advice
- AWE Sales Forecasting and Rate Model: An innovative, user-friendly tool to model scenarios, solve for flaws, and incorporate uncertainty into rate making
- FinancingSustainableWater.org: Web-based resources to convene the latest research and information in one location

AWE Sales Forecasting and Rate Model

- Models Water Demand Variability
- Models Water Revenue Variability
- Analyzes Customer Bills
- Assesses Affordability
- Assesses Fiscal Sustainability
- Analyzes Uncertainty
- Allows Scenario Planning

Alliance Sales Forecasting and Rate Model

Typical water rate models assume that future sales are known with certainty, and do not respond to price, weather, the economy, or supply shortages—that is to say, not the world we live in

The AWE Sales Forecasting and Rate Model addresses this deficiency:

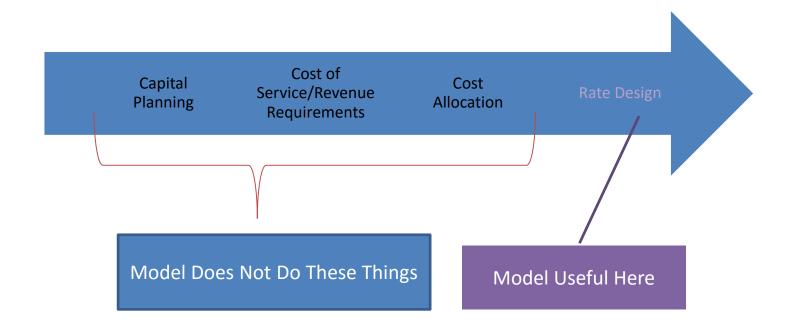
Customer Consumption Variability—weather, drought/shortage, or external shock Demand Response—Predicting future block sales (volume and revenue) with empirical price elasticities Drought Pricing—Contingency planning for revenue eneutrality Probability Management—Bisk theoretic simulation of revenue insiss Fiscal Sustaionability—Sales forecasting over a 3 Year Time Horizon

Model Module

The model is divided into two modules: the Rate Design Module and the Revenue Simulation Module. With the Rate Design Module work in harness your historical billing data to evaluate the performance of your current volumetric rates. This module and high your answer quasitors would increasing the relate in our top ter by 215 how on water demond? Will Ahiping to seasond rates to source recent level of revenue while work in forestaing the relative to increase of decrease? Will Ahiping to seasond rates the work of feed would increasing the relate in our top ter by 215 how on water demond? Will Ahiping to seasond rates the evaluate the personneal water water increase or decrease? Will Ahiping to seasond rates the development of electrone or decrease? Will Ahiping the seasond rates and the Rate Design Module is designed to help you answer them. There are other questions, equally important to rate design and utility financial glanning, that the Rate Design Module is designed to help you answer them. There are other questions, equally important to rate design and utility financial glanning. The the Rate Design Module is designed to help you answer them. There are other questions, equally important to rate design and utility financial glanning. The the Rate Design Module is designed to help you answer them. There are other questions are current argest under our current or proposed rates? What is the chance our revenue will take on the low of low or units are on the module our one you. Three year, fore your revenue targets under our current or proposed rates? What is the chance our revenue will take on the level of the relative our setters on the level of our design and utility financial glanning performance are evaluated to a rate water site is foreign and work site site of the vater use curratinent in response to drought or other causes of supply shortel. The Revenue Simulated to a rate our current projections. While the site of the development is a terme and the Rate Design Module is designed to a site revelop and the

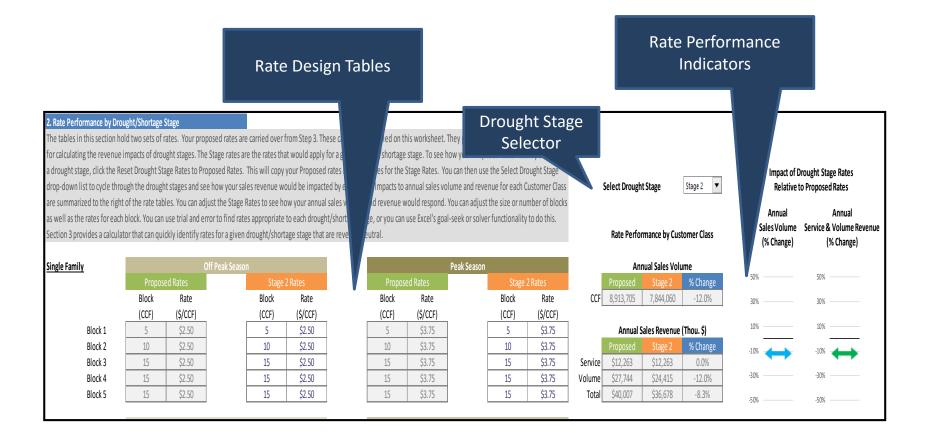
What Data is Required to Use the Model

To use the **Rate Design Module** you need to provide bill tabulations for each of your customer classes. A bill tabulation shows bit number of customer bills at various levels of water usage during a specified period of time. You construct bill tabulations from the billing records of your utility. To use the **Revenue Simulation Module**, in addition to the bill tabulation data, you need at minimum 15 years of historical monthly precipitation and average daily manum ait temperature data. More than 15 years of data is preferable. The model can accept up to 90 years of data if it is available.


Required Excel Settings for Model

Both modules require Excel's Visual Basic for Applications to run. Therefore, you must enable Macros in Excel or the model will not work correctly.

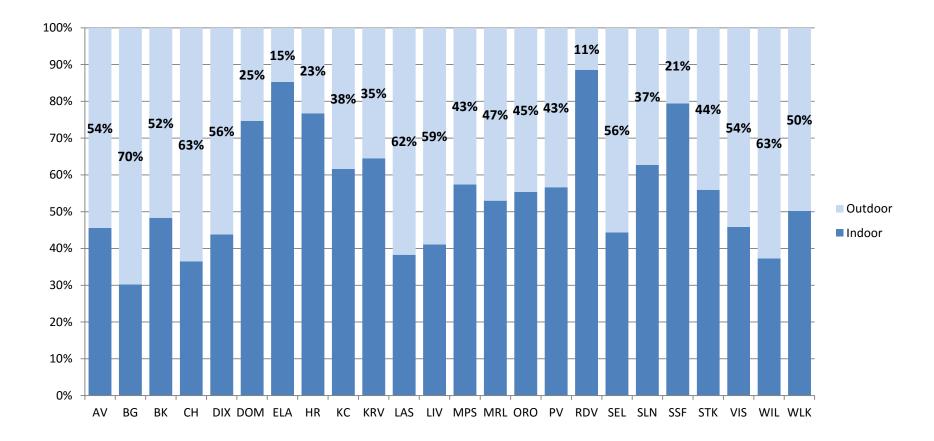
Input and Formula Cells


State of the limit alls These ratio have seen house while background and background
 Model Overview and Instructions Step 1 Model Setup Rate Design Module Step 2 Enter Bill Tabulations Step 3 Customer Service Charges

The Model in the Rate Setting Process

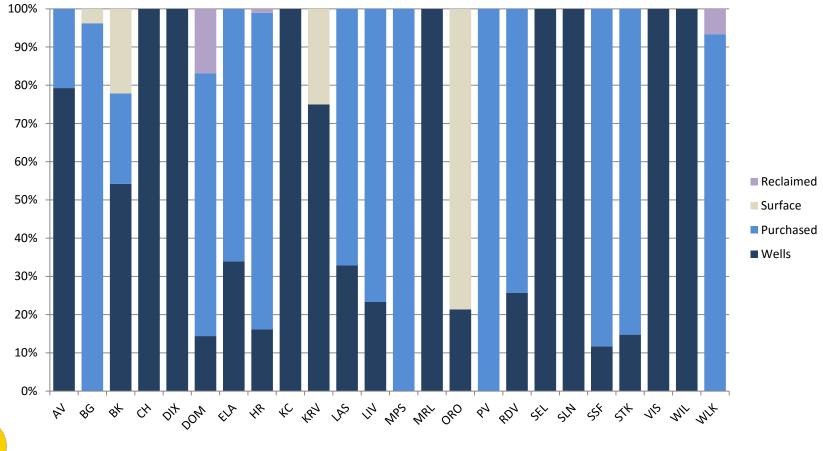
Designing Drought Rates

California Water Service

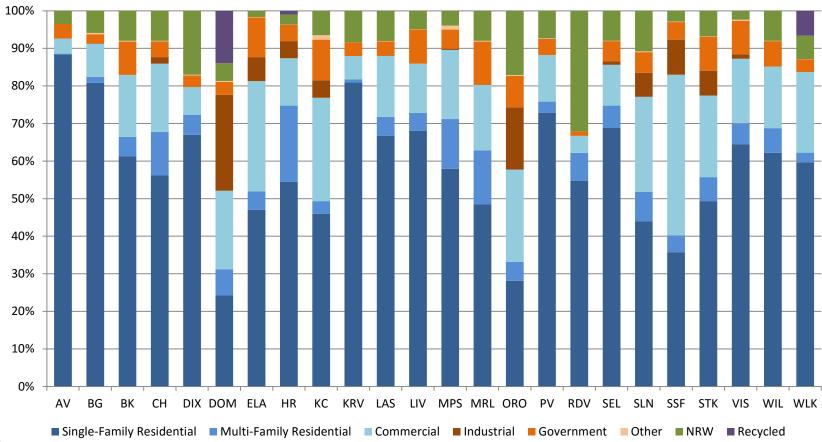


California Water Service

- 24 service areas
- 80 communities
- 500,000 service connections
- 2,000,000 population



Single-Family Residential Indoor/Outdoor Water Use



Water Supply Source Overview

Water Demand Overview

Process

- Preliminary analysis of 14 scenarios
 Bakersfield, Livermore, Los Altos, Stockton
- Narrowed to 3 scenarios
- Analysis of 3 scenarios
 - 21 service areas
- Reviewed and refined
- Determined feasibility

Scenario Planning – 14

- No change to Tier 1
- Tier 2 changes (25-50%)
- Tier 3 changes (25-100%)
- New Tier 4 (25-200%)
- New Tier 5 (25%-400%)
- Non-residential (25-50%)

Scenario Planning - 3

Tier	Scenario 1	Scenario 2	Scenario 3
Tier 1	No Change	No Change	No Change
Tier 2	25%	50%	25%
Tier 3	50%	100%	50%
Tier 4*	N/A	N/A	100%
Non-Residential	25%	50%	25%

Price Elasticity

Price Response Scenario	Low		e Low Medium		High	
	Off Peak	Peak	Off Peak	Peak	Off Peak	Peak
Single-Family	-0.050	-0.150	-0.100	-0.300	-0.150	-0.450
Multi-Family	-0.025	-0.075	-0.050	-0.150	-0.075	-0.225
Non-Residential	-0.100	-0.100	-0.200	-0.200	-0.300	-0.300

AWE Model - Inputs

2. Rate Performance by Drought/Shortage Stage

The tables in this section hold two sets of rates. Your proposed rates are carried over from Step 3. These cannot be modified on this worksheet. They provide the point of reference for calculating the revenue impacts of drought stages. The Stage rates are the rates that would apply for a given drought/shortage stage. To see how your Proposed rates would perform in a drought stage, click the Reset Drought Stage Rates to Proposed Rates. This will copy your Proposed rates into the tables for the Stage Rates. You can then use the Select Drought Stage drop-down list to cycle through the drought stages and see how your sales revenue would be impacted by each stage. Impacts to annual sales volume and revenue for each Customer Class are summarized to the right of the rate tables. You can adjust the Stage Rates to see how your annual sales volume and revenue would respond. You can adjust the size or number of blocks as well as the rates for each block. You can use trial and error to find rates appropriate to each drought/shortage stage, or you can use Excel's goal-seek or solver functionality to do this. Section 3 provides a calculator that can quickly identify rates for a given drought/shortage stage that are revenue neutral.

Single Family				
	Proposed Rates			
	Block	Rate	Block	Rate
	(CCF)	(\$/CCF)	(CCF)	(\$/CCF)
Block 1	11	\$2.72	11	\$2.72
Block 2	17	\$2.95	17	\$3.69
Block 3	1000000	\$3.43	1000000	\$5.15
Block 4	1000000	\$3.43	1000000	\$5.15
Block 5	1000000	\$3.43	1000000	\$5.15

Multi Family					
	Block	Rate		Block	Rate
	(CCF)	(\$/CCF)		(CCF)	(\$/CCF)
Block 1	1000000	\$2.97		1000000	\$3.71
Block 2	1000000	\$2.97		1000000	\$3.71
Block 3	1000000	\$2.97		1000000	\$3.71
Block 4	1000000	\$2.97]	1000000	\$3.71
Block 5	1000000	\$2.97		1000000	\$3.71

Non Residential		
	Prop	
	Block	Rate
	(CCF)	(\$/CCF

	(CCF)	(\$/CCF)	(CCF)	(\$/CCF)
Block 1	1000000	\$2.97	1000000	\$3.71
Block 2	1000000	\$2.97	1000000	\$3.71
Block 3	1000000	\$2.97	1000000	\$3.71
Block 4	1000000	\$2.97	1000000	\$3.71
Block 5	1000000	\$2.97	1000000	\$3.71

Block

Rate

		Peak Season		
Block	Rate		Block	Rate
(CCF)	(\$/CCF)		(CCF)	(\$/CCF)
11	\$2.7222] 1	11	\$2.72
17	\$2.9495	1.25	17	\$3.69
1000000	\$3.4323	1.50	1000000	\$5.15
1000000	\$3.4323	1.50	1000000	\$5.15
1000000	\$3.4323	1.50	1000000	\$5.15

		Peak Season		
Block	Rate		Block	Rate
(CCF)	(\$/CCF)		(CCF)	(\$/CCF)
1000000	\$2.97	1.25	1000000	\$3.71
1000000	\$2.97		1000000	\$3.71
1000000	\$2.97		1000000	\$3.71
1000000	\$2.97		1000000	\$3.71
1000000	\$2.97		1000000	\$3.71

		Peak Season		
			Stage 2	
Block	Rate		Block	
(CCF)	(\$/CCF)		(CCF)	
1000000	\$2.97		1000000	
1000000	\$2.97		1000000	
1000000	\$2.97		1000000	
1000000	\$2.97		1000000	
1000000	\$2.97		1000000	

Rate (\$/CCF) \$3.71 \$3.71 \$3.71 \$3.71 \$3.71

Select Drought Stage Stage 2 💌 Impact of Drought Stage Rates

Annual

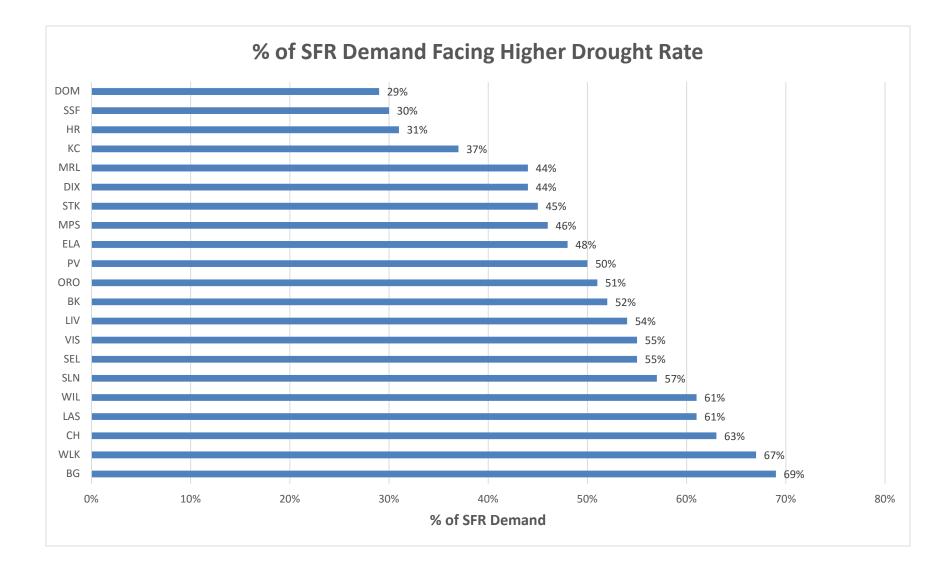
Rate Performance by Customer Class

Annual Sales Volume						
		Stage 2	% Change			
CCF	4,360,963	3,844,916	-11.8%			
Annual Sales Revenue (Thou. \$)						
	Annual 9	Sales Revenue	(Thou. \$)			
	Annual S Proposed	Sales Revenue Stage 2	(Thou. \$) % Change			
Service						
	Proposed	Stage 2	% Change			
Service Volume Total	Proposed \$0	Stage 2 \$0	% Change #DIV/0!			

	Annual Sales Volume				
		Stage 2	% Change		
CF	1,235,734	1,089,054	-11.9%		

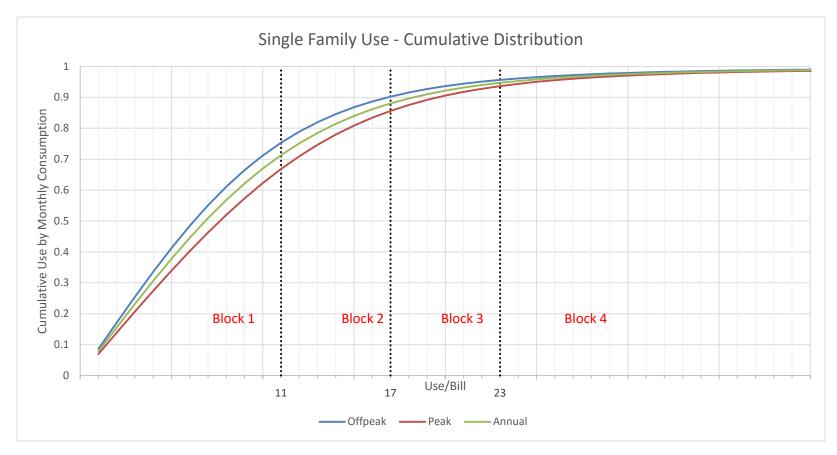
	Annual Sales Revenue (Thou. \$)					
	Proposed Stage 2 % Change					
Service	\$0	\$0	#DIV/0!			
Volume	\$3,664	\$4,037	10.2%			
Total	\$3,664	\$4,037	10.2%			

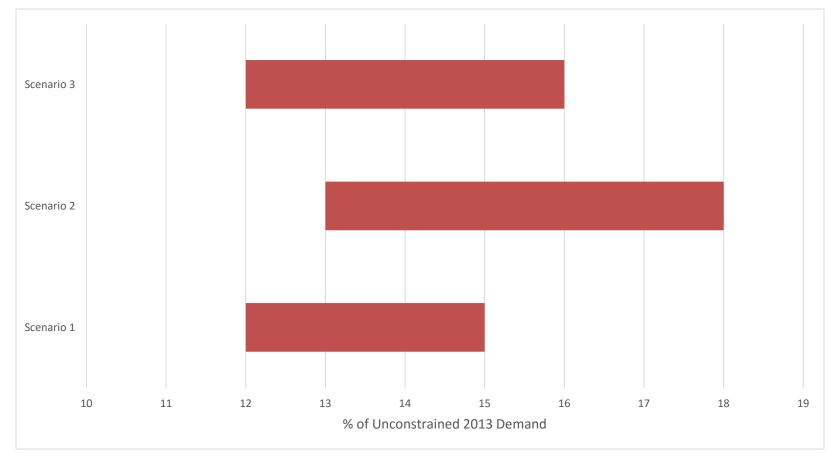
	Annual Sales Volume				
			% Change		
CCF	11,394,247	9,807,198	-13.9%		
	Annual Sales Revenue (Thou. \$)				
	Annual S	iales Revenue	(Thou. \$)		
	Annual S Proposed	ales Revenue Stage 2	(Thou. \$) % Change		
Service			,		
Service Volume	Proposed	Stage 2	% Change		

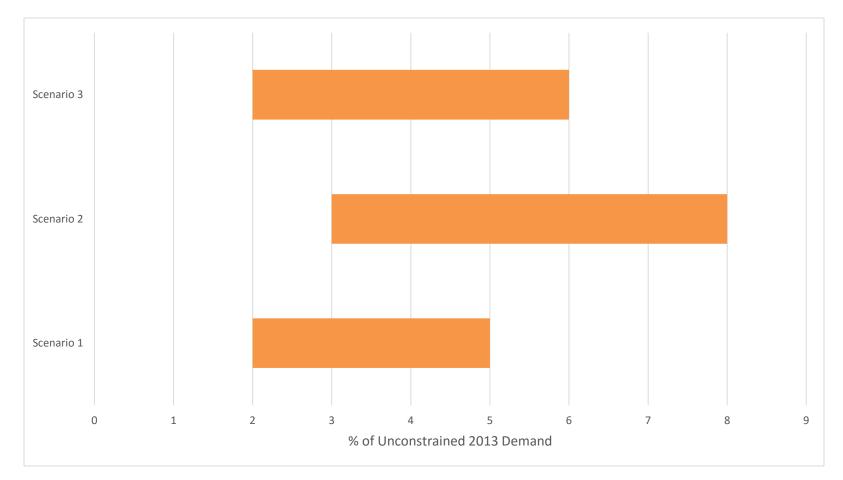

Relative to Proposed Rates

SS	Sales Volume	Service & Volume Revenue	
	(% Change)	(% Change)	

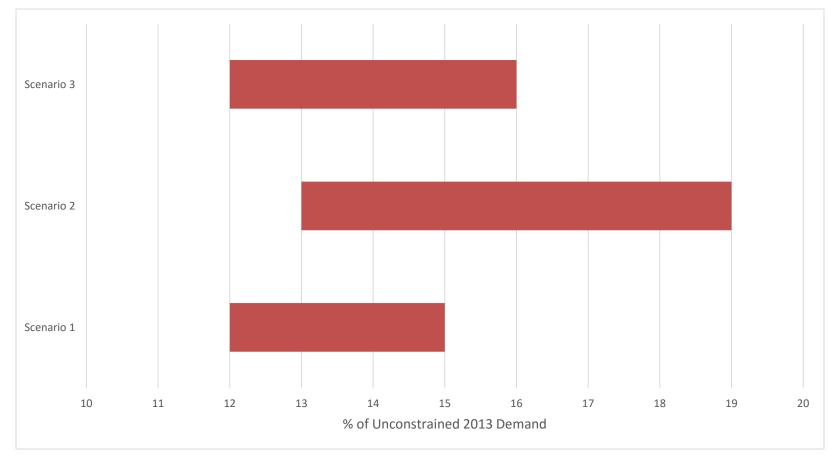
Annual

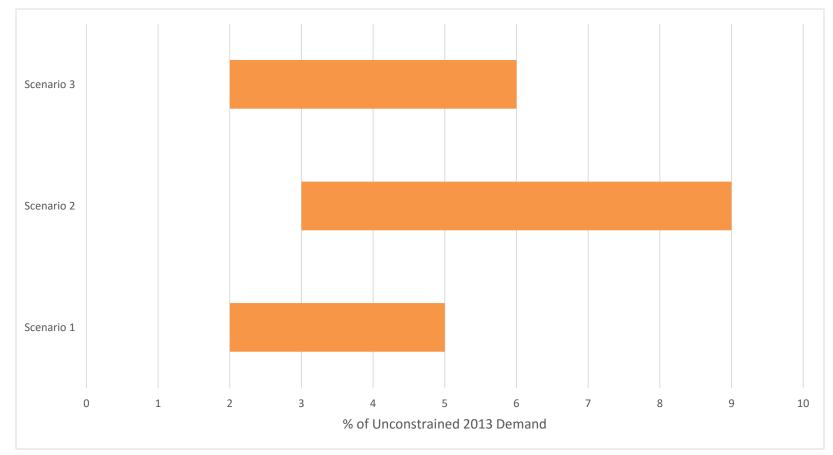

50%		50%	
30%		30%	
10%		10%	
-10%	\leftarrow	-10%	\rightarrow
-30%		-30%	
-50%		-50%	
50%		50%	
30%		30%	
10%		10%	\leftrightarrow
-10%		-10%	
-30%		-30%	
-50%		-50%	
50%		50%	
30%		30%	
10%		10%	\leftrightarrow
-10%	\leftrightarrow	-10%	
-30%		-30%	
-50%		-50%	


Dominguez

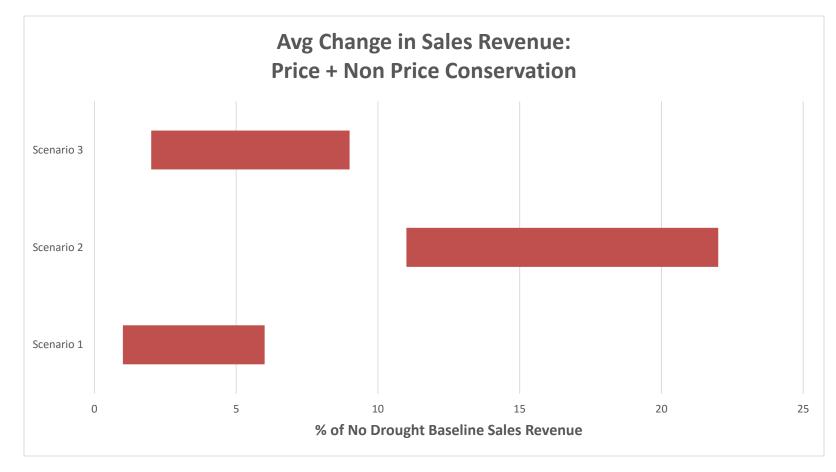

Average Reduction in SFR Demand

Price + Non-Price Conservation


Average Reduction in SFR Demand Price Only


Average Reduction in Total Demand

Price + Non-Price Conservation


Average Reduction in Total Demand Price Only

Average Change in Sales Revenue

Price + Non-Price Conservation

Contact Information

Ken Jenkins Interim Director of Drought Management & Conservation California Water Service <u>kjenkins@calwater.com</u> www.calwater.com/conservation

> Mary Ann Dickinson President/CEO Alliance for Water Efficiency <u>maryann@a4we.org</u> www.allianceforwaterefficiency.org

