This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Building Better Water Rates for an Uncertain World: Probability Management for Laypeople

Thomas W. Chesnutt, Ph.D., CAP® A & N Technical Services, Inc. <u>http://www.antechserv.com</u> 839 Second Street, Suite 5 Encinitas CA, 92024 760.942.5149

tom@antechserv.com

David L. Mitchell M.Cubed 5358 Miles Avenue Oakland CA, 94618 510.547.4369 mitchell@mcubed-econ.com

The Heart of the Problem

- Water rates have traditionally been focused solely on historical cost-recovery
- When system costs change quickly, and perhaps unpredictably, historical rates do not reflect today's cost consequences
- Rates do not then give customers correct information to make consumptive decisions

Long-term trends in consumer prices (CPI) for utilities

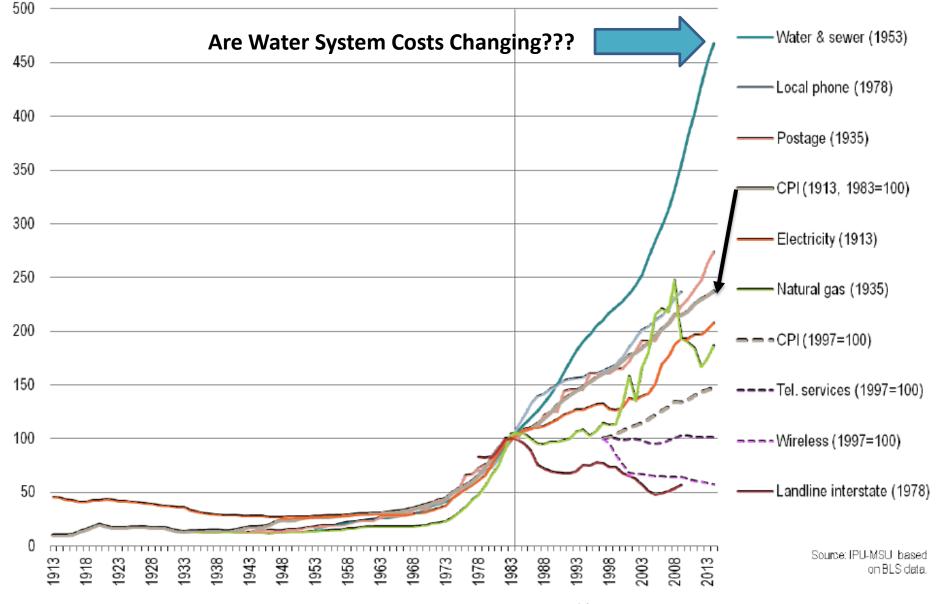


Exhibit 1. Long-term trends in the Consumer Price Index (CPI) for utilities (1913-2014). The index is set to 100 for 1982-1984 except for telephone and wireless services, where the index is set to 100 for 1997. Year (*) indicates start of series.

Conservation is Part of the Solution

- It is a long-term cost reducer to the utility
- Revenue loss is often due to other drivers
- Every gallon saved is water that does not have to be pumped, treated and delivered
- Conservation is an investment and short-term effects must be planned for
- Reduced utility costs generally mean reduced customer rates in the long-term due to avoided infrastructure capacity increases

Financing Sustainable Water

- Building Better Rates in an Uncertain World: A Handbook to explain key concepts, provide case studies and implementation advice
- AWE Sales Forecasting and Rate Model: An innovative, user-friendly tool to model scenarios, solve for flaws, and incorporate uncertainty into rate making
- FinancingSustainableWater.org: Web-based resources to convene the latest research and information in one location

AWE Handbook

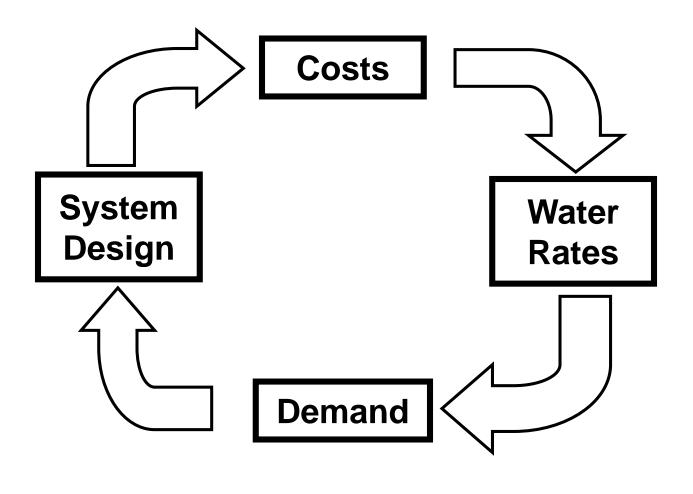
BUILDING BETTER WATER RATES FOR AN UNCERTAIN WORLD

BALANCING REVENUE MANAGEMENT, RESOURCE EFFICIENCY, AND FISCAL SUSTAINABILITY

SECTION I: Introduction
SECTION II: Today's Imperative for Utility Financial Management
SECTION III: The Role of Ratemaking
SECTION IV: Building a Better (Efficiency-Oriented) Rate Structure
SECTION V: Financial Policies & Planning for Improved Fiscal Health
SECTION VI: Implementing an Efficiency-Oriented Rate Structure

Appendices

- Appendix A Costing Methods
- Appendix B Demand and Revenue Modeling
- Appendix C AWE Sales Forecasting and Rate Model User Guide



Building Better Water Rates for an Uncertain World: Balancing Revenue Management, Resource Efficiency, and Fiscal Sustainability

Flow of Economic Logic

How Do Utilities Address This?

- Ends of Water Utilities: Water Services
 - Reliable Delivery of Quality Water
 - Handling of Waste water, Storm water, Watershed management
- By what financial means do utilities achieve these ends?
 - Cost Recovery (Short term)
 - Resource Efficiency (Short and Long term)
 - Fiscal Sustainability (Long term)

Why a New Rate Model?

Typical water rate models assume that future sales are known with certainty, and do not respond to price, weather, the economy, or supply shortages—that is to say, not the world we live in.

The AWE Sales Forecasting and Rate **Model** addresses this deficiency:

- Customer Consumption Variability-weather, drought/shortage, or external shock
- Demand Response—Predicting future block sales (volume and revenue) with empirical price elasticity's
- Drought Pricing—Contingency planning for revenue neutrality
- *Probability Management*—Risk theoretic simulation of revenue risks using SIPmath[®]
- Fiscal Sustainability—Sales forecasting over a 5 Year **Time Horizon**
- Affordability—Can customers afford water service?

Sales Forecasting and Rate Model

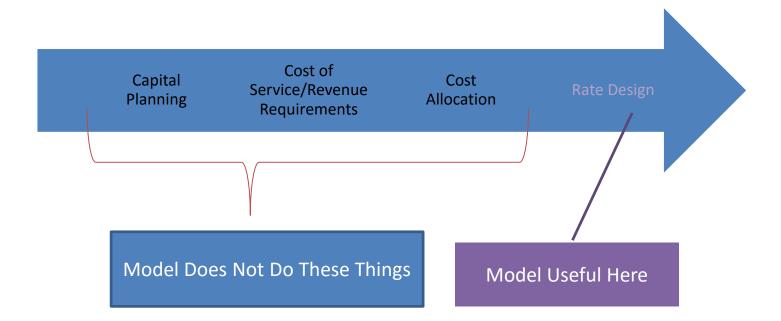
Version 1.0

Overview

Typical water rate models assume that future sales are known with certainty, and do not respond to price, weather, the econo

The AWE Sales Forecasting and Rate Model addresses this deficiency:

- Customer Consumption Variability-weather, drought/shortage, or external shock
- Demand Response-Predicting future block sales (volume and revenue) with empirical price elasticities
- Drought Pricing-Contingency planning for revenue neutrality
- Probability Management-Risk theoretic simulation of revenue risks
- Fiscal Sustainability-Sales forecasting over a 5 Year Time Horizon


Model Modules

The model is divided into two modules: the Rate Design Module and the Revenue Simulation Module. With the Rate Design volumetric rates or proposed new volumetric rates. This module can help you answer questions such as: What effect would in cause overall water use to increase or decrease? What block rate design could allow us to preserve our current level of revenue management objectives during water shortages? What proportion of customer bills will increase (or decrease) under our propo the development of effective water rates, and the Rate Design Module is designed to help you answer them. There are othe Module is not able to answer. These include questions like: What is the likelihood we will meet our one-year, three-year, fiveturn out more than 15% below our current projections. What level of confidence can we have that our sales will exceed our m world are unknown. For near-term water sales forecasting the key uncertainties are weather, growth of accounts, and possible Revenue Simulation Module is designed to help answer sales revenue planning questions addressing risk and uncertainty. It about future account growth and risk of water use curtailment to simulate your water demands and sales revenues over a five conditions. Using the Revenue Simulation Module you can assess how well or poorly your current or proposed rates are likely

What Data is Required to Use the Model

To use the Rate Design Module you need to provide bill tabulations for each of your customer classes. A bill tabulation shows You construct bill tabulations from the billing records of your utility. To use the **Revenue Simulation Module**, in addition to the Model Overview and Instructions / Step 1

WHERE MODEL FITS INTO RATE SETTING PROCESS

What Rate Designs Can Be Modeled?

- Rate Designs
 - Uniform
 - Seasonal
 - Block
 - Seasonal Block
- Up to 5 blocks
- Can vary rates and blocks by customer class
- Up to six customer classes

What Data is Needed to Use It?

- Bill Tabulations from Billing System Data
 - By Class
 - By Season (Off-Peak, Peak)
- Follows AWWA M1 Bill Tabulation Methodology
- Allocating Bills to Seasons
 - Easy when bills are rendered monthly
 - Bit harder when bills are rendered bi-monthly or quarterly

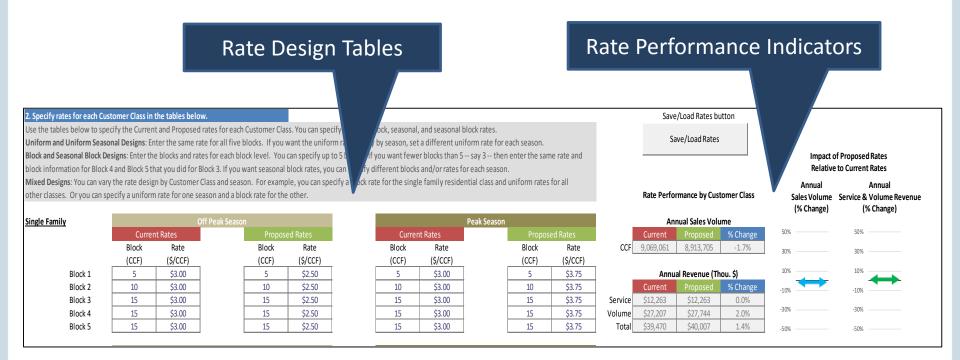
Bill Tabulation Screenshot

Step 2: Enter Customer Class Bill Tabulations

On this worksheet, you enter bill tabulations for your Bill Tabulation Year for the customer classes you set up in Step 1. A bill tabulation shows the number of bills may not fall neatly into the seasons you defined in Step 1, creating a seasonal bill tabulation is more challenging than creating an annual bill tabulation. It which this read date corresponds). It will always be the case that consumption will span the two seasons for some bills. In these cases, you will need to have are in the first season, then assign it to the first season). The User Guide provides additional guidance and examples for preparing your bill tabulations. In addusing your meter read data.

Go back to Rate Design Module Worksheet

	Customer Class: Single Family							Customer Class: Multi Family				
			Off Peak	Season	Peak Season			Off Peak	Season	Peak Season		
			Oct -	Apr	May - Sep			Oct ·	- Apr	May	- Sep	
				Total	Total			Total		Total		
Usage Bin			Use of Bills	Use of Bills			Use of Bills		Use of Bills			
(Thou	. Gal.)		Bills in	in Bin	Bills in	in Bin		Bills in	in Bin	Bills in	in Bin	
From	То		Bin	(Thou. Gal.)	Bin	(Thou. Gal.)		Bin	(Thou. Gal.)	Bin	(Thou. Gal.)	
0	0		1,854	0	700	0		36	0	17	0	
1	1		1,781	1,781	601	601		11	11	4	4	
2	2		2,073	4,146	631	1,262		12	24	3	6	
3	3		3,122	9,366	787	2,361		8	24	5	15	
4	4		4,084	16,336	917	3,668		22	88	4	16	
5	5		4,974	24,870	1,122	5,610		22	110	9	45	
6	6		5,751	34,506	1,150	6,900		20	120	7	42	
7	7		6,548	45,836	1,322	9,254		29	203	10	70	
8	8		7,080	56,640	1,354	10,832		41	328	6	48	
9	9		7,883	70,947	1,385	12,465		49	441	10	90	
10	10		8,173	81,730	1,531	15,310		54	540	9	90	
11	11		8,333	91,663	1,554	17,094		55	605	10	110	
12	12		8,439	101,268	1,588	19,056		45	540	15	180	
13	13		8,309	108,017	1,565	20,345		66	858	18	234	
14	14		8,377	117,278	1,552	21,728		80	1,120	21	294	
15	15		8,082	121,230	1,611	24,165	-	81	1,215	17	255	



Rate Design Table

Block #	Block Switch Point	Rate for Block		
Block 1	10	\$2.50		
Block 2	20	\$3.00		
Block 3	Rate for first 10 units	\$3.75		
Block 4	Rate for next	\$3.75		
Block 5	10 units	\$3.75 Copy rate in last block to unused		
	Rate for units in excess of 20	blocks		

Rate Design Screenshot

Bill Impacts Screenshot

Affordability Indicator

3. Bill impacts of Proposed rates Under your Proposed rates, the volume charge may go up for some customers and down or stay the same for others. The Bill Impacts Table shows the percentage of bills that will go

CII

Landscape

Not in use Not in use

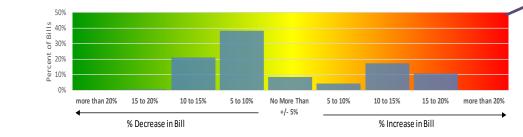
Avg and median bill impacts

> Customer Class Single Family Multi Family

Current	Proposed	% Change	Current	Proposed	% Change
\$777	\$804	3.4%	\$650	\$672	3.3%
\$4,254	\$4,294	0.9%	\$1,930	\$1,942	0.6%
\$3,323	\$3,382	1.8%	\$1,481	\$1,504	1.5%
\$5,599	\$6,007	7.3%	\$2,503	\$2,720	8.7%

down, stay the same, or go up -- and by how much. Charts showing the distribution of bill impacts for each customer class are provided on the Bill Impacts worksheet.

Affordability index equals the median annual water cost for the primary residential customer class divided by median household income.


Affordability Index										
Cur	rent	Proposed								
5.0%		5.0%								
4.0%		4.0%								
3.0%		3.0%								
2.0%		2.0%								
1.0%	+	1.0%	+							
0.0%		0.0%								

Customer Class
Single Family
Multi Family
CII
Landscape
Not in use
Not in use

	% of bills de	creasing by		No More Than		% of bills increasing by			
more than 20%	15 to 20%	10 to 15%	5 to 10%	+/- 5%	5 to 10%	10 to 15%	15 to 20%	more than 20%	
0%	0%	21%	38%	9%	4%	17%	11%	0%	
0%	1%	38%	25%	4%	4%	18%	12%	0%	
0%	0%	25%	20%	28%	7%	9%	10%	0%	
0%	0%	26%	12%	33%	2%	6%	20%	0%	

Bill Impacts Table

Bill Impact Histograms

Drought Rates

- Evaluate rate performance under water use curtailment
- Up to 4 drought stages can be specified
- Curtailment levels can vary by customer class
- User can design rates "by hand", OR
- Use built-in calculator to find revenue-neutral rates by drought stage

Specifying Curtailment Levels

Requested curtailment level by stage

1. Specify Curtailment Levels for Drought/Shortage Stages

- 1. Enter the Customer Class curtailment levels for each stage. If you have fewer than 4 stag Shortage condition. Do not modify the settings for this stage.
- 2. For each stage, enter the expected compliance rate. The compliance rate can vary by sta stages where curtailment is mandatory and enforced. The expected curtailment level for rate.

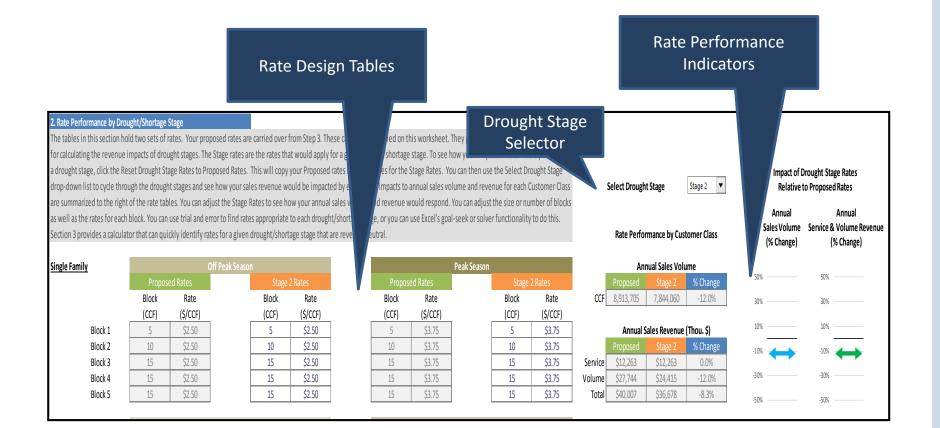
e last curtailment level in the unused stages. Stage 0 is the default No

xample, stages with voluntary curtailment may have lower compliance than e is the product of the stage's curtailment level and the expected compliance

	Drought/S	hortage Stage	Customer Class	s Curtailment L	s Table	Expected Curtailment				
Customer Class	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
Single Family	0%	10%	15%	20%	25%	0%	8%	12%	17%	21%
Multi Family	0%	10%	15%	20%	25%	0%	8%	12%	17%	21%
CII	0%	0%	10%	20%	25%	0%	0%	8%	17%	21%
Landscape	0%	0%	10%	20%	25%	0%	0%	8%	17%	21%
Not in use	0%					0%	0%	0%	0%	0%
Not in use	0%					0%	0%	0%	0%	0%

Enter Expected Compliance % 100%

85%


85%

Expected curtailment

Expected compliance rate

Designing Drought Rates

Drought Rate Calculator

3. Calculate Revenue Neutral Rates by Drought Stage

The revenue neutral rates calculator will quickly find a set of rates for a given drought/shortage stage that will generate the same revenue as your Proposed rates under a no shortage condition. There are four steps to using the calculator:

- 1. Choose the drought/shortage stage you want to calculate rates for.
- 2. Choose the method for calculating the rates. There are two choices. The first choice is to adjust your Proposed rates so that each customer class generates the same revenue it would have generated under your Proposed rates assuming no use curtailment. This may result in significant differences across classes in the amount by which rates are adjusted. The second choice is to adjust your Proposed rates so that all classes when grouped together are revenue neutral. Rates across classes will be adjusted by the same proportionate amount. Revenue neutrality may not hold for individual classes, but overall revenue will be neutral to the Proposed rates assuming no use curtailment.
- 3. Complete the Leave or Adjust Rate in Block table below. Choose Leave if you want the rate in the block to be the same as it is for your Proposed rates. Choose Adjust if you want the calculator to adjust this rate. For example, if you only want to adjust the upper block rates, choose Leave for lower blocks and Adjust for upper blocks. If you have fewer than 5 blocks, set the unused blocks to the same setting used for your last block.

▼

- 4. Make desired adjustments to the block widths for the Stage Rates in the Stage Rates tables above.
- 5. Click the Find Revenue Neutral Rates button.

Note: The calculator will overwrite the rates that are in the Stage Rates tables above. If you want to preserve these rates, save them as a rate scenario by clicking the Save/Load Rates button before using the calculator.

Choose Drought Stage to Evaluate:

Stage 2 🔻

Choose Method for Calculating Revenue Neutral Rates: 1. Scale rates so that each customer class is revenue neutral

Leave or Adjust Rate in Block?

Class	Block 1	Block 2	Block 3	Block 4	Block 5
Single Family	Leave	Adjust	Adjust	Adjust	Adjust
Multi Family	Leave	Adjust	Adjust	Adjust	Adjust
CII	Leave	Adjust	Adjust	Adjust	Adjust
Landscape	Leave	Adjust	Adjust	Adjust	Adjust
Not in use	Leave	Leave	Leave	Leave	Leave
Not in use	Leave	Leave	Leave	Leave	Leave

Reset Drought Stage Rates to

Proposed Rates

Find Revenue Neutral Rates

Save/Load Rates

Limitations of the Rate Design Module

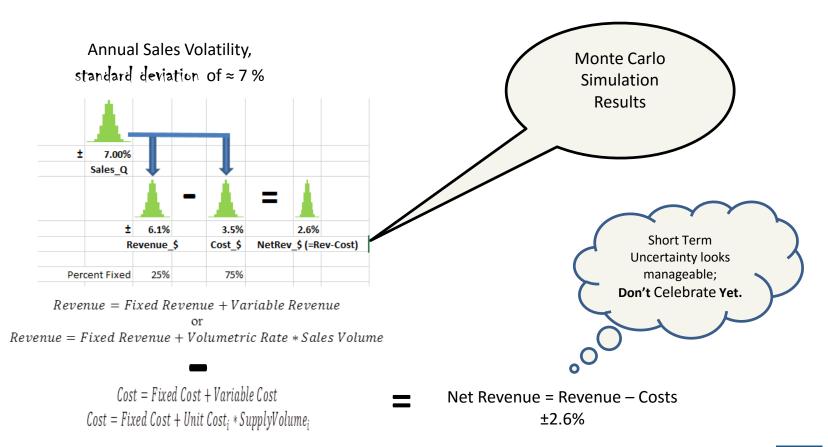
Plans based on average assumptions are wrong on average ---Sam Savage, The Flaw of Averages

- Results only as good as the bill tabulation data
- Can only evaluate how rates will perform ON AVERAGE
- Does not provide insight into VARIABILITY of performance
- That's where the Revenue Simulation Module steps in

Revenue Simulation Module

Questions the Simulation Module Can Address

- What is the likelihood we will meet our oneyear, three-year, five-year revenue targets under our current or proposed rates?
- What is the chance our revenues will turn out more than 15% below our current projections?
- What level of confidence can we have that our sales will exceed our minimum planning estimates?



What is Net Revenue Volatility?

- Empirical view of Volatility: Definition in Finance
 - One year change
- Big Scary Question: How does sales variation affect Net Revenues (Revenues minus Costs)
- Typically the more revenues collected on variable/commodity charges the more potential for revenue volatility (up and down)
 - Exception: Seasonal Rates (Peak season demand can be less variable)

Short Term: The Shape of Uncertainty and Revenue Risk

ProbabilityManagement.org

Sam Savage on Curing the Flaw of Averages

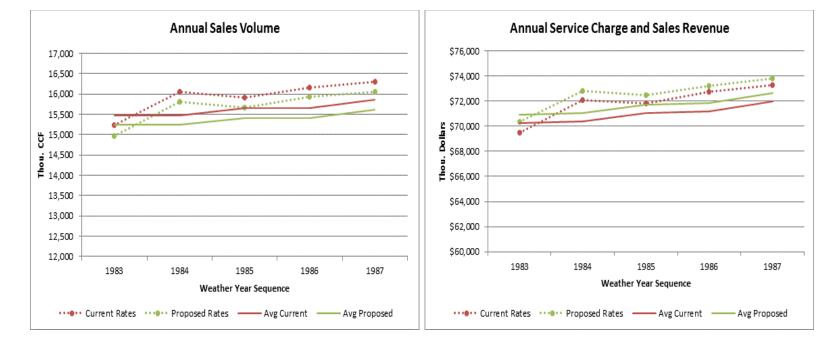
Probability Management

Average Outcome vs. Likely Outcomes

Flaw of Averages

- Fact 1 Planning for the future is rife with uncertainties.
- Fact 2 Most people are not happy with Fact 1 and prefer to think of the future in terms of average outcomes.
- Fact 3 The "flaw of averages" states that plans based on average assumptions are, on average, wrong.

-adapted from Savage (2012) Flaw of Averages
www.probabilitymanagment.org


The cyclist is **Safe** on the average path

On average, the cyclist is dead.

Do Water Sales stay on the average path? Then why do water sales forecasts?

Answer: They don't have to.

AWE Sales Forecasting and Rate Model: Open Source Drought Rates

http://www.financingsustainablewater.org/tools/awe-sales-forecasting-and-rate-model

Towards an Alternative Decision-Making Framework

- Information can reduce uncertainty. Information that cannot effect a decision has no strategic value.
- Interactive simulation is a strategy for explicitly displaying the effects of a decision on uncertain outcomes.
- Diversification—spreading risk over a variety of outcomes—helps minimize the likelihood of extreme outcomes.

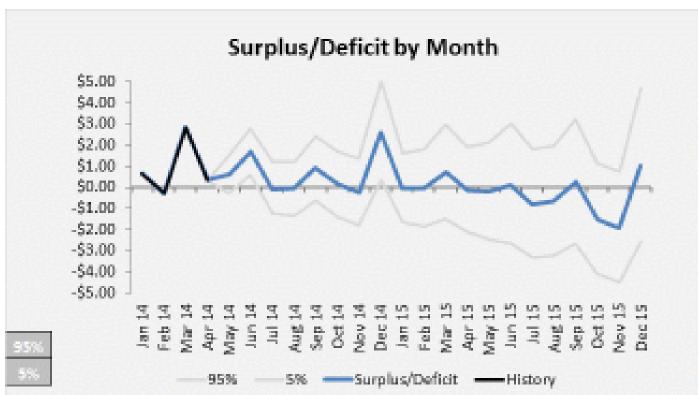
SIPs and SLURPs of Water

- Interactive simulation and visualization better communicate decision uncertainties
- SIP Stochastic Information Packets
 - In the SIPmath[™] 2.0 Standard, uncertainties are communicated as data arrays called SIPs (Stochastic Information Packets). Thus random draws from uncertain possibilities are stored as a column of realizations.

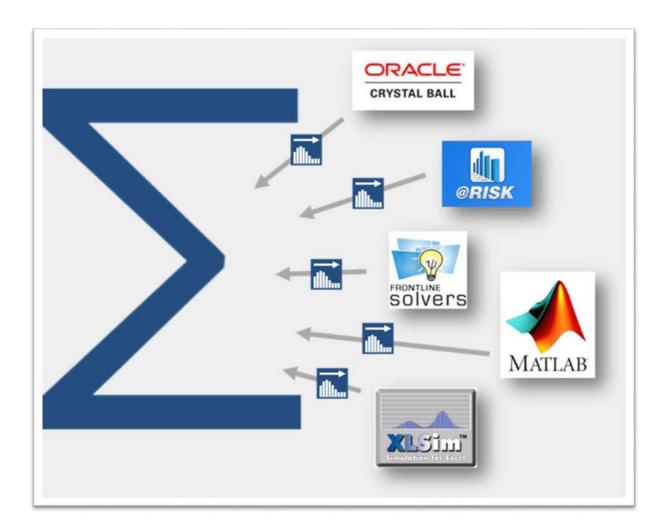
SLURP – Stochastic Library Unit Relations Preserved

 A coherent set of SIPs that preserve statistical relationships between uncertainties is known as a Stochastic Library Unit with Relationships Preserved (SLURP).

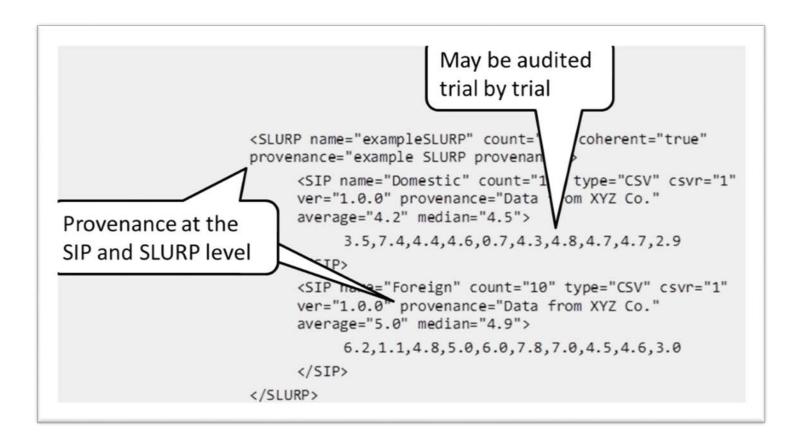
Stochastic Information Packets (SIPs)


- SIPs advance the modeling of uncertainty.
- SIPs are:
- Actionable
- Additive
- Auditable

SIPMath™ is Actionable

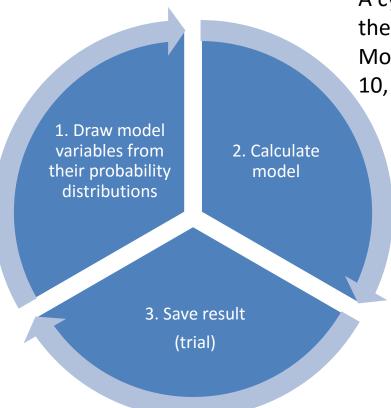

Sips can be used directly in calculations of uncertainty. Cells in Excel can refer to SIPs instead of a single number. No macros or add-ins need remain in the spreadsheet.

SIPMath[™] is Additive


Uncertainties can be summed, enabling enterprise risk management

SIPMath[™] is Auditable

The SIPMath[™] standard requires provenance. Saved SIPs can be replicated using same seed=auditability.

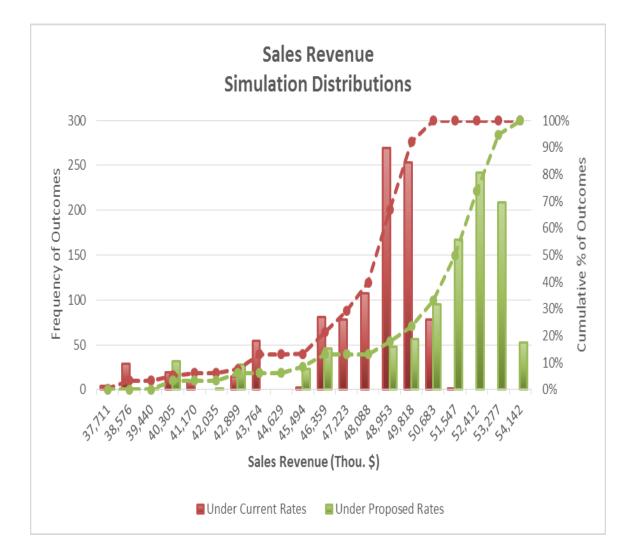


How Does Probability Management Work in The AWE Rate Model?

- The model focuses on three variables that are key to short-run revenue performance:
 - Weather (historical or synthetic)
 - Growth (projected)
 - Supply disruption/use curtailment (correlated to weather)
- Two rate designs are simultaneously evaluated:
 - Current rate (reference condition)
 - Proposed rate
- Simulation enacted with SIPmath[®]

Simulation Process

A cycle constitutes 1 trial. In the Revenue Simulation Module, User can simulate 10, 100, 500, or 1000 trials.



Why Simulate?

- Alternatives to simulation are:
 - Ignore uncertainty (a common strategy)
 - Construct scenarios (also common)
 - Both are problematic
- Simulation offers:
 - More complete enumeration of possible outcomes
 - Likelihood of particular outcomes

Simulation of Sales Revenue Distribution

Additional Data Needed for Module

Weather

- Monthly Precipitation and Temperature data for Service Area
 - Historical (up to 90 years), OR
 - Synthetic (for example, to simulate impact of climate change)
- Easy to get historical weather data for service areas Guidebook recommends several sources for weather data
- Customer Class Account Growth
 - User specifies Low, Medium, High Account Growth Rates, by Class

Weather Data Screenshot: Two SIPs make a SLURP

On this wo You can en It is not re	Step 6: Enter Weather Data to be Used On this worksheet you enter historical mor You can enter up to a maximum of 90 years It is not required that you provide data for Can enter up to 90 yrs. Need at lea 15. More is better than less.								rei vei	v your dema ars. It also n te rows of t	nust be com	plete acro	SS	Can modify historical weather for future climate change if desired.												
Go back to 1. Set mos Enter the r	Consult the user guide for information on Victure out sources. Go back to Revenue Simulation Module Worksheet 1. Set most recent year in your weather data Enter the most recent year for which you are providing weather data. Most recent year: 2012																									
-	onthly Prec monthly pr		otals (in) n in inches f Mar	for each y	ear of weat	ther data yo	ou have fo Jul	r your serv	ice . Sep	Oct	Nov	Dec	Enter the	monthly ave	erage daily	maximum	airtempe	e (degrees F erature in de maximum a May	grees Fal				,	i have for t re. Nov	your Dec	
2012	2.91	1.18	4.17	2.56	0.00	0.04	0.00	0.00	0.00	0.87	4.09	5.83	2012	61.0	63.0	63.0	70.6	78.6	82.9	85.9	87.3	36p 83.4	75.7	65.8	56.9	
2011	1.18	4.06	6.26	0.28	0.79	1.93	0.00	0.00	0.00	0.91	1.22	0.08	2011	56.2	60.5	62.7	69.0	72.4	79.2	84.3	84.5	86.4	76.5	62.8	60.0	
2010	5.71	2.80	1.93	3.82	1.06	0.00	0.00	0.00	0.00	0.83	1.85	5.71	2010	55.1	60.8	65.3	66.1	72.5	82.6	84.1	83.3	85.2	74.9	64.7	57.2	
2009	1.02	6.34	2.36	1.22	0.71	0.00	0.00	0.00	0.16	3.74	0.59	2.40	2009	60.4	59.1	65.4	70.6	78.6	80.4	86.6	87.1	88.0	73.3	65.7	54.6	
2008	7.13	1.85	0.12	0.08	0.00	0.00	0.00	0.00	0.00	0.04	2.36	1.81	2008	53.7	60.8	66.5	71.6	77.7	85.3	86.7	88.5	85.1	78.1	66.9	54.7	
2007	0.43	3.70	0.24	0.59	0.28	0.00	0.00	0.00	0.12	1.22	0.75	2.40	2007	58.2	60.8	70.5	72.2	77.7	83.9	86.1	87.0	80.8	72.9	67.4	55.9	
2006	2.24	1.97	6.26	4.25	1.02	0.00	0.00	0.00	0.00	0.12	1.42	2.95	2006	58.5	63.2	59.3	66.0	77.8	84.9	91.8	83.9	83.0	74.0	64.2	57.9	
2005	4.33	3.31	2.60	1.46	1.26	0.28	0.00	0.00	0.00	0.12	0.94	10.04	2005	52.7	61.3	67.0	68.8	74.9	78.7	89.7	87.2	80.1	75.6	67.8	58.8	
2004	2.48	5.04	0.91	0.08	0.08	0.00	0.00	0.00	0.08	2.64	2.17	3.90	2004	55.1	59.7	74.0	75.0	77.9	83.2	85.9	87.0	86.7	73.1	62.2	56.8	
2003	1.14	0.98	1.46	3.58	0.51	0.00	0.00	0.00	0.00	0.00	1.65	5.94	2003	59.2	61.5	67.6	64.9	76.6	83.3	91.1	86.3	86.6	81.5	61.7	56.6	
2002	0.75	1.54	1.89	0.16	1.18	0.00	0.00	0.00	0.00	0.00	2.40	8.66	2002	55.0	63.0	64.6	69.5	76.1	84.0	87.5	86.1	86.1	76.2	66.9	58.1	
2001	1.89	5.51	1.10	1.14	0.00	0.12	0.00	0.00	0.12	0.28	3.58	7.01	2001	57.0	59.2	69.1	67.9	85.9	87.2	84.0	86.4	82.1	78.7	65.9	55.7	
2000	5.79	8.11	2.01	0.79	1.14	0.08	0.00	0.00	0.04	1.34	0.75	0.39	2000	58.8	60.0	66.5	72.9	76.9	84.5	82.5	86.1	84.3	73.1	61.0	59.3	
1999	2.76	5.12	2.48	1.69	0.08	0.00	0.00	0.00	0.00	0.31	2.05	0.51	1999	55.3	58.5	60.8	69.1	73.0	80.7	83.2	83.3	82.8	79.3	66.4	61.2	
1998	8.03	12.20	2.09	1.26	2.64	0.00	0.00	0.00	0.16	0.79	3.07	0.67	1998	56.3	57.6	64.9	67.5	67.3	76.5	85.4	88.9	82.6	73.8	62.3	55.3	
1997	8.19	0.20	0.24	0.24	0.28	0.20	0.00	0.47	0.00	0.79	5.47	2.56	1997	56.0	63.4	69.9	73.1	82.6	83.0	86.5	84.6	86.1	75.2	65.5	56.5	
1996	5.28	5.94	2.44	1.81	1.77	0.00	0.00	0.00	0.00	0.91	2.72	6.89	1996	57.9	62.1	67.1	72.9	77.5	84.3	89.5	88.9	82.1	75.5	65.1	59.0	
1995	9.84	0.20	8.62	1.06	1.22	1.18	0.00	0.00	0.00	0.00	0.00	6.77	1995	57.1	61.3	62.2	68.3	71.7	79.9	86.2	87.7	83.8	79.2	71.2	59.9	
1994	1.77	3.94	0.20	0.87	1.61	0.00	0.00	0.00	0.00	0.67	5.91	2.48	1994	58.2	58.4	68.4	70.9	74.1	83.4	84.4	87.0	82.4	75.3	58.0	53.0	
1993	8.46	4.25	2.13	0.59	0.55	0.39	0.00	0.00	0.00	0.31	2.52	2.36	1993	54.8	58.7	67.2	69.9	75.8	84.6	85.7	86.6	84.1	76.8	65.3	55.0	
1992	1.38	5.94	3.11	0.31	0.00	0.28	0.00	0.00	0.00	1.38	0.16	6.02	1992	52.8	63.7	65.7	74.8	81.9	80.8	85.7	88.8	84.9	79.1	66.6	54.2	

Calculation of Weather Effects

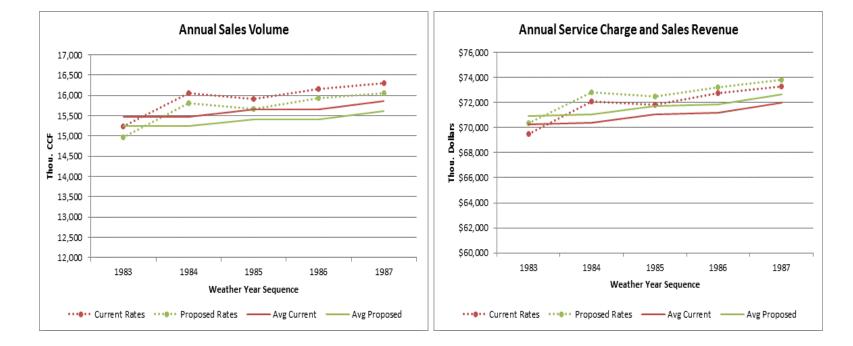
- Based on CUWCC GPCD Weather Normalization Methodology and Empirical Model
- Accounts for
 - Seasonal Shape of Demand
 - Relative Importance of (weather sensitive) Outdoor Use
- Monthly effects formed into weighted-average seasonal effect
- Weighting accounts for:
 - Monthly contribution to total seasonal use
 - Strength of monthly weather effect on total seasonal use
- Weather effect coefficients can be modified by user

Uncertain Account Growth

Can simulate with or without growth uncertainty

- No Growth
- Certain Growth
- Uncertain Growth
- If Uncertain Growth, then Low, Medium, High Growth Rates transformed into probability distribution
 - Normal
 - Triangular
 - Uniform

User specifies which distribution to use


Water Use Curtailments

Three Choices

- Exclude from simulation
- Associate with historical weather (preferred method)
- Specify likelihood

Are Future Sales and Revenue Uncertain?

Drought Pricing

- Shortages are when, not if.
- Imposing curtailments on customers affects revenues
- This can be planned for, communicated, and effectively implemented.

Drought Rates Missing from Most Local Drought Plans in California

Today they're short of water. Tomorrow they'll be short of cash. As water supplies dwindle in the face of the driest year in California's history, most of the state's urban water utilities face 2014 financially flatfooted.

CalTrans Highway Sign 2014 -- photo: Eric Beteille, pedestrianphotographer.com

Drought

- Let's talk probability and evidence
- What is the probability of a more than one decade-long drought? ...Where? When?
 - In the Southwest US
 - Within a 50 year period,
 - 1950 to 2000?
 - Or better 2050-2099?

Answer - P80

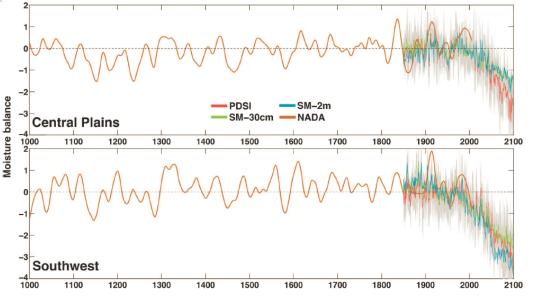
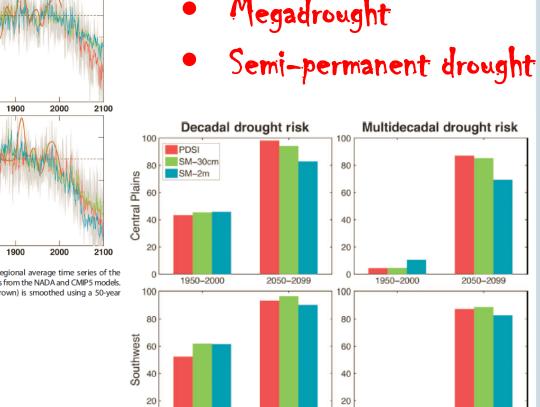



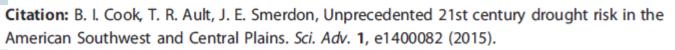
Fig. 1. Top: Multimodel mean summer (JJA) PDSI and standardized soil moisture (SM-30cm and SM-2m) over North America for 2050-2099 from 17 CMIP5 model projections using the RCP 8.5 emissions

(125°W-105°W, 32°N-41°N). Bottom: Regional average time series of the summer season moisture balance metrics from the NADA and CMIP5 models. The observational NADA PDSI series (brown) is smoothed using a 50-year

[I'm not making this up.]

0

1950-2000


This will be on the test...new vocabulary

Megadrought

Fig. 5. Risk (percent chance of occurrence) of decadal (11-year) and multidecadal (35-year)

1950-2000

2050-2099

dvances.sciencemag.org/content/advances/1/1/e1400082.full.pdf

2050-2099

Associate Drought Stage with Historical Weather

Preferred Method

3. Enter Monthly Average Maximum Air Temperature (degrees F)

Enter the monthly average daily maximum air temperature in degrees Fahrenheit for each year of weather data you have for your service area. Be sure you are entering average daily maximum air temperature and not average daily air temperature.

4. Enter Drought Shortage Stage

(Optional) For each hydrologic year you can select what drought/shortage stage would have applied given your current system supplies and customer demands. You can then have the model use this information when it simulates water sales. This is explained further in Step 5 Setup Simulation.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Stage	Index
2012	61.0	63.0	63.0	70.6	78.6	82.9	85.9	87.3	83.4	75.7	65.8	56.9	Stage 0	0
2011	56.2	60.5	62.7	69.0	72.4	79.2	84.3	84.5	86.4	76.5	62.8	60.0	Stage 0	0
2010	55.1	60.8	65.3	66.1	72.5	82.6	84.1	83.3	85.2	74.9	64.7	57.2	Stage 0	0
2009	60.4	59.1	65.4	70.6	78.6	80.4	86.6	87.1	88.0	73.3	65.7	54.6	Stage 2	2
2008	53.7	60.8	66.5	71.6	77.7	85.3	86.7	88.5	85.1	78.1	66.9	54.7	Stage 0	0
2007	58.2	60.8	70.5	72.2	77.7	83.9	86.1	87.0	80.8	72.9	67.4	55.9	Stage 0	0
2006	58.5	63.2	59.3	66.0	77.8	84.9	91.8	83.9	83.0	74.0	64.2	57.9	Stage 0	0
2005	52.7	61.3	67.0	68.8	74.9	78.7	89.7	87.2	80.1	75.6	67.8	58.8	Stage 0	0
2004	55.1	59.7	74.0	75.0	77.9	83.2	85.9	87.0	86.7	73.1	62.2	56.8	Stage 0	0
2003	59.2	61.5	67.6	64.9	76.6	83.3	91.1	86.3	86.6	81.5	61.7	56.6	Stage 0	0
2002	55.0	63.0	64.6	69.5	76.1	84.0	87.5	86.1	86.1	76.2	66.9	58.1	Stage 0	0
2001	57.0	59.2	69.1	67.9	85.9	87.2	84.0	86.4	82.1	78.7	65.9	55.7	Stage 1	1
2000	58.8	60.0	66.5	72.9	76.9	84.5	82.5	86.1	84.3	73.1	61.0	59.3	Stage 0	0
1999	55.3	58.5	60.8	69.1	73.0	80.7	83.2	83.3	82.8	79.3	66.4	61.2	Stage 0	0
1998	56.3	57.6	64.9	67.5	67.3	76.5	85.4	88.9	82.6	73.8	62.3	55.3	Stage 0	0
1997	56.0	63.4	69.9	73.1	82.6	83.0	86.5	84.6	86.1	75.2	65.5	56.5	Stage 0	0
1996	57.9	62.1	67.1	72.9	77.5	84.3	89.5	88.9	82.1	75.5	65.1	59.0	Stage 0	0
1995	57.1	61.3	62.2	68.3	71.7	79.9	86.2	87.7	83.8	79.2	71.2	59.9	Stage 0	0
1994	58.2	58.4	68.4	70.9	74.1	83.4	84.4	87.0	82.4	75.3	58.0	53.0	Stage 0	0
1993	54.8	58.7	67.2	69.9	75.8	84.6	85.7	86.6	84.1	76.8	65.3	55.0	Stage 0	0
1992	52.8	63.7	65.7	74.8	81.9	80.8	85.7	88.8	84.9	79.1	66.6	54.2	Stage 0	0
1991	57.8	65.3	59.6	68.5	72.7	77.9	85.1	82.0	84.4	80.6	67.6	57.1	Stage 4	4
1990	57.0	57.8	65.4	73.3	74.6	81.8	85.8	84.7	83.3	79.2	65.9	53.9	Stage 3	3
1989	55.6	56.8	63.4	73.5	75.6	80.5	86.4	83.1	79.0	74.5	67.2	57.0	Stage 2	2
1988	56.2	66.0	70.1	70.9	74.6	81.3	89.2	84.5	83.1	75.7	62.6	57.1	Stage 1	1
1987	55.2	62.1	64.8	76.2	78.8	81.5	80.9	83.9	82.6	77.7	63.6	55.2	Stage 0	0

Drought Stage association table

Additional Resources

www.waterrf.org

- WaterRF 4175 A Balanced Approach to Water Conservation in Utility Planning, 2012.
- www.waterrf.org/ExecutiveSummaryLibrary/4175 ProjectSummary.pdf
- WaterRF 2935 Water Efficiency Programs for Integrated Water Management, 2007.
- http://www.waterrf.org/ExecutiveSummaryLibrary/91149 2935 profile.pdf

www.financingsustainablewater.org

- AWE Handbook-Building Better Water Rates for an Uncertain World
- <u>http://www.financingsustainablewater.org/tools/building-better-water-rates-uncertain-world</u>
- AWE Sales Forecasting and Rate Model: Open Source Drought Rates
- http://www.financingsustainablewater.org/tools/awe-sales-forecasting-and-rate-model

Free tools and examples at....

http://probabilitymanagement.org/sip-math.html and

http://probabilitymanagement.org/models.html

The Free SIPmath[™] Tools to facilitate the creation of such models:

http://probabilitymanagement.org/tools.html

Mindle = A Handle for the Mind

Five Basic Mindles for Grasping Uncertainty

Green Words Things you know already	Mindles Things to improve your grasp	Things to Remember	Things to Forget
Uncertainty vs. Risk	Risk is in the eye of the beholder.	Risk Attitude	UTILITY THEORY
Uncertain Number	SHAPE	Distribution, Histogram Cumulative Distribution Percentiles	RANDOM VARIABLE
Combinations of Uncertain Numbers	SHAPE	Diversification Flaw of Averages (weak form)	VARIANCE, STANDARD DEVIATION, CENTRAL LIMIT THEOREM
Plans Based on Uncertain Numbers	The State of Underwork at his AVERAGE position is ALIVE. But the AVERAGE state of the druct is DEAD	Flaw of Averages (strongform)	FUNCTIONS OF RANDOM VARIABLES, JENSEN'S INEQUALITY
Interrelated Uncertain Numbers		Scatter Plot	STATISTICAL DEPENDENCE, CORRELATION, COVARIANCE

S. Savage: Flaw of Averages, overview on p 47. One chapter on each mindle.

Save the date

- Click on hyperlink below
- http://events.r20.constan tcontact.com/register/eve nt?oeidk=a07eb2lk97u9fd 05b26&llr=lr9yi7pab

Annual Conference A Common Risk Lexicon for Government and Industry January 26 - 27, 2016

Our economy is becoming increasingly regulated to protect us from financial, security and public safety risks. A common language for communicating and calculating uncertainties is needed to make such regulation effective.

Register Now!

Featuring

Harry Markowitz Nobel Laureate and Probability Management.org Board Member

Sam Savage Executive Director, Probability Management.org and author of The Flaw of Averages

Doug Hubbard President of Hubbard Decision Research and author of How to Measure Anything

FSW

Use the Super Super Secret code ANTE246 for a discount on your registration fee.

Building Better Water Rates for an Uncertain World

Thomas W. Chesnutt, Ph.D., CAP®

A & N Technical Services, Inc. http://www.antechserv.com 839 Second Street, Suite 5 Encinitas CA, 92024 760.942.5149 tom@antechserv.com