This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

It's No Oxymoron Save Water Without Changing Station Run Times

Mike Baron Toro Water Management October 8, 2015

 Residential landscape water use is better managed when station run times are left unchanged from month to month and season to season rather than when irrigation schedules are automatically adjusted by sophisticated, multi-variable algorithms and lead the end-user to mis-adjust the controller.

Programming Complexity From Inputting 8 Factors Per Zone

Sprinkler Efficiencies and Average Precip Rates	Precip Rate (in/hr)	Efficiency
Spray Head (default)	1.70	70%
Full Circle Rotor	0.50	80%
Part Circle Rotor	1.00	80%
Mixed Rotors	0.75	80%
Full Circle Impact	0.50	85%
Part Circle Impact	1.00	85%
Mixed Impacts	0.75	85%
Stream Rotors	0.65	75%
Bubbler	2.55	90%
Drip Emitter	1.50	90%
Stream Spray	0.75	70%

Soil Type	s Available Water	Infil Rate
Clay	1.40	0.12
Clay Loam	1.95	0.20
Loam	1.80	0.30
Sandy Loam	1.40	0.50
Sandy (default)	1.10	0.70

Crop Coefficient	Root Depth
Cool Season Grass (default)	· · ·
Warm Season Grass	Cool Season Grass (default)
Combined Grass	Warm Season Grass
Flowers	Combined Grass
Trees	Flowers
Shrubs - High Water	Trees
Shrubs - Med Water	Shrubs - High Water
	Shrubs - Med Water
Shrubs - Low Water	Shrubs - Low Water
Mixed - High Water	Mixed - High Water
Mixed - Med Water	Mixed - Med Water
Mixed - Low Water	Mixed - Low Water
Native Shrubs/Trees	Native Shrubs/Trees
Native Grasses	Native Grasses
Custom Plant A	Custom Plant A
Custom Plant B	Custom Plant B
Custom Plant C	Custom Plant C

Slope Factor

Slope Location Factors

Micro Climate Factors

Root Depth

Cool Season Grass (delault)	
Warm Season Grass	
Combined Grass	
Flowers	
Trees	
Shrubs - High Water	
Shrubs - Med Water	
Shrubs - Low Water	
Mixed - High Water	
Mixed - Med Water	
Mixed - Low Water	
Native Shrubs/Trees	
Native Grasses	
Custom Plant A	
Custom Plant B	
Custom Plant C	

Spacing & Pattern Effects On DULQ of Spray Nozzles

"More water will be saved by having the spray heads operate at the preferred operating pressure of 30 psi <u>with the proper run</u> <u>times programmed into the controller</u> than by trying to raise the bar for higher uniformity for difficult areas to irrigate.

> Brent Q. Mecham, CID, CIC, CLIA, CGIA, Landscape Water Management & Conservation Specialist, Northern Colorado Water Conservancy District, Berthoud, CO; September 11, 2006

Research Goal

To Evaluate the Water Conservation Potential of a Sensor Controlled Turf Irrigation System Compared to Other Scheduling Technologies

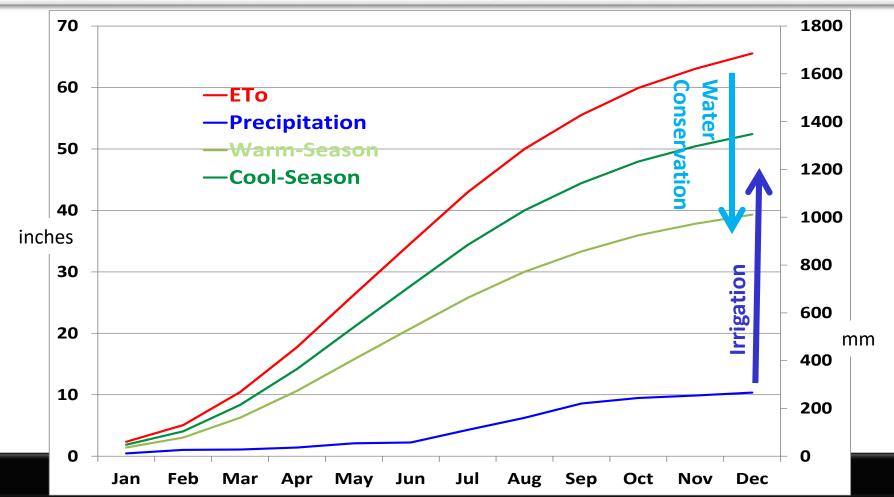
Cooperative Extension Service

Department of Extension Plant Sciences, MSC 3AE College of Agricultural, Consumer, and Environmental Sciences P. O. Box 30003 Las Cruces, NM 88003-8003 Phone: (575) 646 5280 Fax: (575) 646 8085 Bernd Leinauer, Professor, <u>leinauer@nmsu.edu</u>

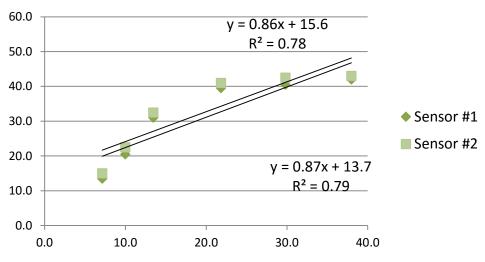
Matteo Serena, Ph.D., mserena@nmsu.edu

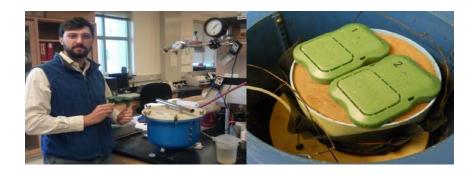
Extension Plant Sciences Department

New Mexico State University



Products Tested Over 2-Year Period New Mexico State University


Turfgrass Irrigation Requirement Las Cruces, NM (2005 – 2009)



Lab Test To Validate Moisture Sensing Technology

Test #	Water salinity (dS m ⁻¹)	Regression	R ²	P value
1	0.0	X= -5.90 + (0.76* Y)	0.85	<0.001
2	0.7	X= -3.75 + (0.77 * Y)	0.89	<0.001
3	2.0	X= -9.04 + (0.91 * Y)	0.78	<0.001
4	4.0	X= -11.14 + (0.65 * Y)	0.90	<0.001

- Track moisture changes accurately
- Not affected by salinity up to 4dS/m

X = gravimetric soil moisture; Y = sensor reading

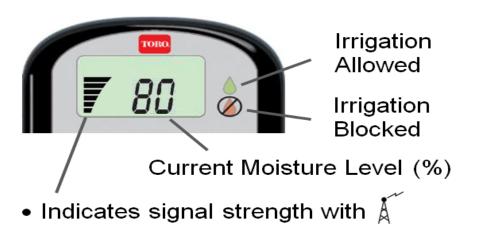
Field Study

- Two grasses: Bermudagrass (*Cynodon dactylon*) tall fescue (*Festuca arundinacea*)
- Sprinkler Irrigation, Toro[®] Precision[™] Series Sprays Turfguard sensors at 5 and 20 cm (°T, %VWC ECb)

Irrigation Treatments

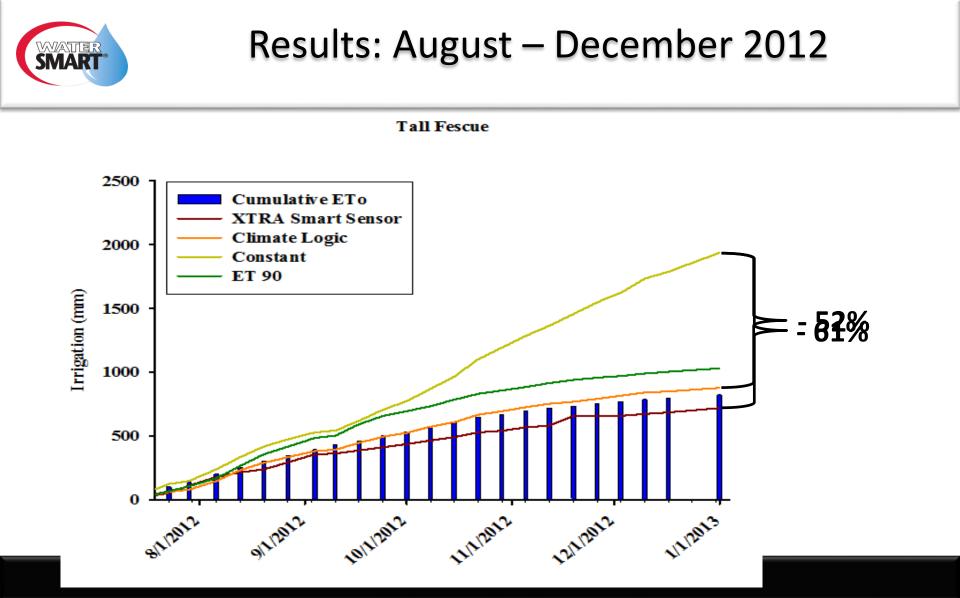
Four different irrigation scheduling systems:

- 1. Precision[™] soil sensors
- 2. Climate Logic weather sensing system
- 3. Constant run time (Homeowner)
- 4. Historic weekly ET

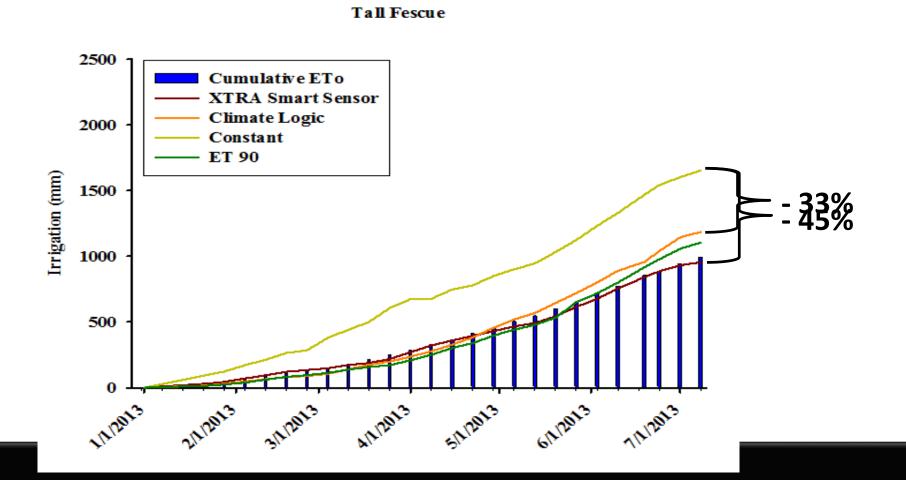


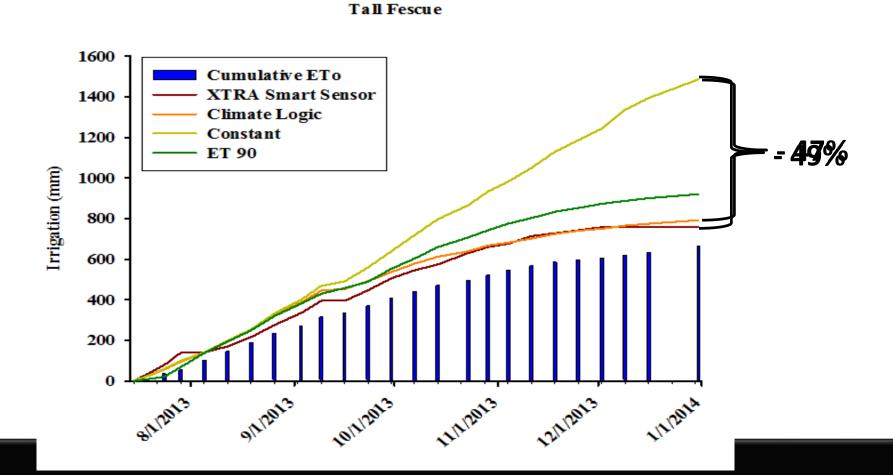
Receiver Design

Indicates battery strength with I +



Data Collection


- Turf quality assessment
- Water consumption (flow meters)
- Soil moisture



Results: January – July 2013

Results: August – December 2013

Summary – Water Savings

Period	Tall fescue	Bermudagrass
July – Dec 2012	61%	46%
Jan – Jun 2013	42%	38%
July – Dec 2013	49%	40%

Water Use By Each Of the Four Treatments

- Tall fescue plots irrigated by a daily constant run time received the most water
- Next, the 90% ETo treatment
- Water consumption for the Climate Logic treatment followed ETo closely
- The PSS treatment resulted in the least amount of water applied.
 - A significant rain event during the first week of September, caused irrigation to be withheld on PSS scheduled plots for about 10 days following the rain event

Implications For Residential Irrigation Scheduling & Control

Moisture Sensors

- Measure moisture content directly, in the soil, vs. a calculated ET
- Manage the interval between watering events rather than adjusting station run times
- During heat waves, avoid increased run times which can produce runoff
- After rain events, will delay resumption of automatic irrigation
 - Gains in significance as average annual rainfall increases
- Does not provide for consistent, repeated irrigation events

THANK YOU !

QUESTIONS??

Mike Baron 951-785-3721 mike.baron@toro.com