This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Savings of ET vs. Timed Water Applications

Providing innovative design solutions for irrigation worldvide.

Brian E. Vinchesi Irrigation Consulting, Inc. Tom Wyatt, Walt Disney World

PURPOSE

To compare and measure the water conservation capabilities of a conventional timer based control system operating on a set duration and frequency versus a weather driven evapotranspiration derived control system that utilizes a computer based algorithm to determine the frequency and duration of the irrigation cycle. Commenced in 2010, 3 year study.

St. Augustine – Floratam

- > Twelve 15' x 15' plots
 - 4 control
 - 4 weather based
 - 4 time based
- Spray Sprinklers
 - Toro 570Z-6PRXCOM
 - Pressure Regulating
 - Check Valve
 - Flow Stop
 - 15Q Precision Nozzles
- > Irritrol 700-01 Valve
- > 40 psi In-line Regulator

- Rain Bird ESP-LX field controller
- Rain Bird MaxiCom central control
- Campbell Scientific weather station
 - > 30 feet away
 - Same turf
- > 8 Individual 5/8 inch water meters
- Effective rainfall first 0.5 inches of storm

Time Based Plots

- 0.75 1 inch of reclaimed water per week as mandated
- Tuesdays and Thursdays per existing South Florida Water Management District statute

ET Based Plots

- Time based on ET reading from the weather station
- 0.8 landscape
 coefficient
- As needed basis with no restriction on how many days per week

Control Plots

- Watered for establishment
- Received only direct rainfall
- Maintained (mowing, fertilization, etc.) with same frequency and same strategy as irrigated plots

AUDITS

Valve #	Irrigation Type	DU _{LQ}	DU _{LH}	RTM	Precipitation Rate
8-16	ET	64.2 %	82.3%	1.28	0.93 inches/hr
8-17	ET	73.7%	85.5%	1.18	0.91 inches/hr
8-18	ET	64.4%	80.8%	1.28	0.88 inches/hr
8-19	ET	48.5%	72%	1.45	0.82 inches/hr
8-20	2x/week	64.8%	82.2 %	1.27	0.85 inches/hr
8-21	2x/week	55.5%	80.4%	1.36	0.88 inches/hr
8-22	2x/week	67.1%	83.9%	1.25	0.88 inches/hr
8-23	2x/week	61.4%	81.2%	1.31	0.85 inches/hr
Average ET	ET	70.6%	85.4%	1.22	0.87 inches/hr
Average	2x/week	65.5%	84.6%	1.26	0.86 inches/hr
2x/week					
Average	All	69.7%	85.4%	1.22	0.87 inches/hr

Each time based irrigation zone programmed to apply net of 0.875 inches/week using RTM (1.26) between the DU_{LH} and DU_{LQ} resulting in 77 minutes per week, 39 minutes per day

November through March halved to 0.438 inches per week (20 minutes per day)

RECORDING & REPORTING

- Weather (rainfall), ET and run times tracked daily
- Water meters read and recorded monthly
- Photos of each plot taken monthly and a brief description of observed turf quality using the University of Florida protocol
- Log of mowing, fertilization, pest management, irrigation schedules and system maintenance

RECORDING & REPORTING

			WATER M	ETER READIN	GS 1-Jul	31-Jul-12			
ET irrigated test plots				Time irrigated test plots					
Meter #	Zone number	Ending reading 31-Jul-12	Begining reading 1-Jul-11	Total gallons	Meter #	Zone number	Ending reading 31-Jul-12	Begining reading 1-Jul	Total gallons
71089660	8-16	10,361.5	10,013.2	348.3	71089666	8-20	12,476.5	11,690.5	786.0
71089661	8-17	11,542.5	11,175.2	367.3	71089667	8-21	12,932.0	12,235.9	696.1
71089663	8-18	10,365.1	10,005.9	359.2	71089668	8-22	12,328.4	11,678.2	650.2
71089665	8-19	9,147.4	8,823.7	323.7	71089669	8-23	13,094.7	12,411.0	683.7

ols average lolar run lime (min) per zone 1 July 12:01am to 31 July 11:59pm:

154

average total run time (min) per zone 1 July 12:01am to 31 July 11:59pm: 273

TURF QUALITY TRENDS

Turfgrass Quality Reference Guide GCREC ET Controller Study

- As expected the irrigated plots have a higher quality than the control plots by a visible amount.
- The irrigated plots track close to the same but the ET plots at times show a slightly higher quality rating.
- In reality, both irrigation schedules provide acceptable turf quality.

Agricultural & Biological Engineering Department

TURF QUALITY TRENDS

RUN TIME COMPARISON

In all but one month the average monthly run time showed that the time scheduled irrigation operated longer than the ET based schedule.

- In May, June and July the two schedules are closer together time wise compared to rest of the year.
- In some months, the timed plots are operating over a 100 minutes more.

RUN TIME COMPARISON

WATER USE COMPARISON

- Except for two months in the spring of 2011 (April and May –typical of Florida) the ET based schedule used less water than the time based schedule
- This was not unexpected as the ET based controllers are designed to match the weather.

WATER USE COMPARISON

CUMULATIVE WATER USE

- ET based plots have applied approximately 64.3 inches of water and used approximately 9,548 gallons
- Time based plots have applied approximately 101 inches of water and used over 15,082 gallons
- Represents over a 36.3% water savings over the 27 month study period (reduced from 36 months)
- Some months savings have been more than 50%

CONCLUSIONS

- Study shows that the ET based control system saves significant water over the mandated schedule.
- Rarely does the ET based schedule use more water than the time based schedule
- The quality of the turf is similar between the two schedules.
- Overall operating time on the ET based schedule is much lower which reduces the overall water window and wear and tear on equipment (study basis).
- Even though a weather station is used, could surmise that most ET based control should have similar water savings