This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Watts in a Drop of Water: Savings Opportunities at the Water-Energy Nexus

Rachel Young, ACEEE Presented at WaterSmart Innovations 2014 October 2014

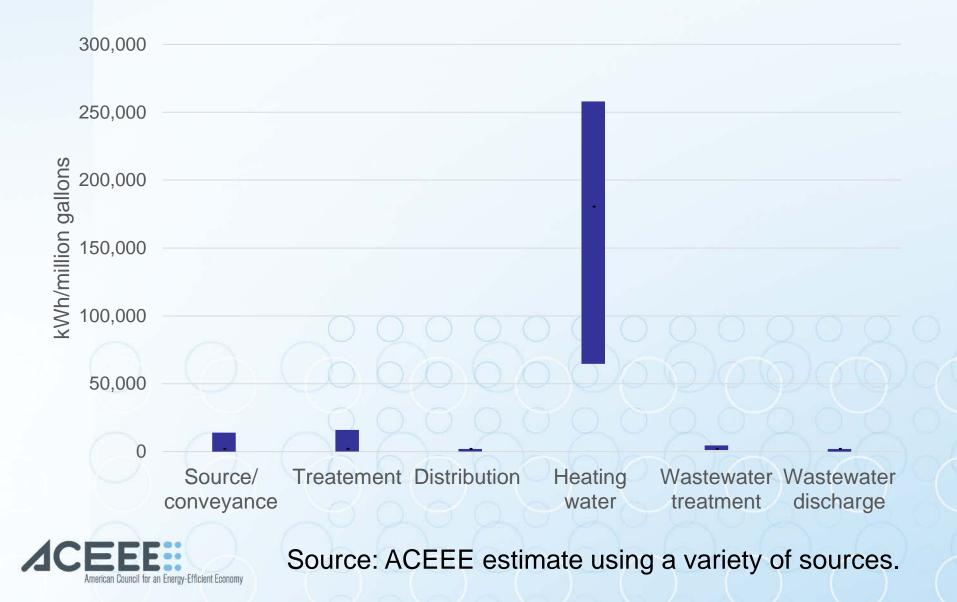
The American Council for an Energy-Efficient Economy (ACEEE)

- ACEEE is a 501(c)(3) nonprofit that acts as a catalyst to advance energy efficiency policies, programs, technologies, investments, & behaviors
- 50 staff; headquarters in Washington, D.C.
- Focus on end-use efficiency in industry, buildings, & transportation
- Other research in economic analysis; behavior; energy efficiency programs; & national, state, & local policy
- Funding:
 - Foundation Grants (52%)
 - Contract Work & Gov't. Grants (20%)
 - Conferences & Publications (20%)
 - Contributions & Other (8%)

www.aceee.org/@ACEEEdc

Outline

- What is the water-energy nexus
- Range of energy used in water services
- Energy saving opportunities
- Next steps


What is the energy-water nexus?

- Energy is needed to transport, treat, heat, cool, and recycle water.
- Water is needed in energy extraction, production, and processing.
- Saving water saves energy and saving energy saves water.

Energy intensity of water

Energy intensity of water services

			Water services (kWh/million gallons)			
Source State		Year	Source and Conveyance	Treatment	Distribution	
CEC	CA	2005	0 - 14,000 100 - 16,000		100 - 1,200	
EPRI	USA	2002	300 - 1,824 NA		NA	
IL 2012 ISAWWA ISAWWA						
IN 201			2,198-1,9	981 (range for 3 utili	ties)	
	E or an Energy-Efficient I	Economy				

Energy intensity of wastewater services

Source	State	Year	Wastewater collection (kWh/million gallons)	Wastewater treatment (kWh/million gallons)	Wastewater discharge (kWh/million gallons)
CEC	CA	2005		1,100 - 4,600	NA
EPRI	USA	2002	NA	TricklingActivatedAdvancedFilterSludgeTreatmentwithnitrification	NA
		0	NA	1,811 – 2,236 - 2,596 - 2,951 – 673 1,028 1,188 1,558	NA
River Network	USA	2009	Q_{0}	700 - 4,600	0 - 400
	CIE for an Energy-Eff	Bojant Economy	Cà	200000000	

Water source matters

- Groundwater supply of water from public sources requires about 30% more electricity on a unit basis than supply from surface water.
- Groundwater requires energy to pump water to the surface:
 - Between 40 and 80 kWh required to lift one million gallons of water 10 feet.

	Ground water	Surface water
Domestic Withdrawals (million gallons per day)	8,468	17,168
Electricity consumption (kWh per million gallons)	1,824	1,406

Source: EPRI 2002

Utility size matters

- Over 150,000 public water supply systems in the United States.
- Approximately 23,000 privately operated treatment facilities.
- No water utility operates identically.
- Smaller utilities use more electricity per unit of water produced than do large utilities.

Utility Size	Mean (kWh/mgal)	Minimum (kWh/mgal)	Maximum (kWh/mgal)
Large	1,621	218	3,171
Medium	1,560	75	6,361
Small	2,912	110	12,890
A A	20 00	LOLOL	LOLOY

Source: ISAWWA 2012

Energy in water in U.S.

Water Service	2005 (million kWh)
Energy in water source/conveyance	18,700
Energy in treatment	23,400
Energy in distribution	5,600
Wastewater Service	2005 (million kWh)
Energy in wastewater collection and treatment	11,000
Energy in wastewater discharge	1,500

Source: EPRI energy intensity data and USGS water withdrawal data

Energy to heat water

Domestic	High	Typical	Low
Input temperature	47	57	67
Water heater temperature	140	125	120
Water heater efficiency (EF)			
Electric	0.88	0.92	2.0
Gas	0.52	0.59	0.80
Electric (kWh/million gallon)	258,010	180,450	64,697
Gas (Therm/million gallon)	14,898	9,601	5,519

Source: ACEEE analysis

River Network estimates for savings

Type of program	Reduction taken	Energy saving (million kWh)
Water service electricity use saving	1% of American homes replaced their older, inefficient toilets with WaterSense	38
Indoor residential electricity use saving	Hot water reduction of 20%	41,000
Water supply and treatment systems	5% reduction in water supply and treatment leaks, equal to 0.5% of total water supply.	313

Potential savings

Hot water energy efficiency scenario (30% savings) (million kWh)	Cold water efficiency scenario (30% savings) (million kWh)
2,300	1,200
2,800	1,500
700	400
102,000	
5,000	0000
666	Data and
1,400	700
200	100
110,000*	3,800
	efficiency scenario (30% savings) (million kWh) 2,300 2,800 700 102,000 5,000 1,400 200

Sources: ACEEE analysis, USGS 2005 (water withdrawals) and EPRI 2002 (energy intensity)

EPA's Clean Power Plan

- EPA proposed rule regulates carbon emissions from existing power plants under section 111(d) of the *Clean Air Act*.
- EPA has set state targets using 4 building blocks:
 - Heat rate improvements
 - More natural gas
 - Re-generation
 - Energy efficiency
- States need to develop plans by ~June 2016 (2017 for multistate-plans).

Water and energy savings under 111(d)

- Energy efficiency can be used for compliance.
- Water programs should be considered in state plans because of their energy saving potential.
 - Saves energy at water and wastewater services facilities.
 - Saves energy required to heat water.

More work is needed

- Understanding variables that create the wide range of energy intensities for water services.
- Limited available data.
- Should be gathering and reporting energy use and water use at the water and wastewater utility level.
- Further work is required to estimate embedded water in energy.
- Developing a limited number of well documented factors could make crediting water energy savings easier under 111(d).

Questions?

Rachel Young National Policy Research Analyst ryoung@aceee.org 202-507-4023

Exemplary Programs Report: www.aceee.org/research-report/e131

Energy and Water Utilities Working Together: <u>www.aceee.org/research-report/e13h</u>

Water-Energy Program Directory: www.aceee.org/w-e-programs

