This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Teachers Work with Professionals to Understand Tucson's Water Distribution System:

The Tucson STEM Academy

Water Smart Innovations Conference Las Vegas, NV October 9, 2014

COLLEGE OF AGRICULTURE & LIFE SCIENCES

Curriculum & Lesson Guides: Content & Method

 Use research-based pedagogy

Tucson STEM Academy

- Water Professionals
- > Site Visits
- Resources

- Education Experts
- Applied Lessons
- > Curriculum Guides

Teacher Academies

Offer multiday professional development that evolves teachers' instructional practice and water-related content mastery through STEM integration, interdisciplinary standards inclusion, project based learning, real-world and relevant application, and collaborative work with teachers.

94% agree or strongly agree that the information, strategies, and instructional methods presented during the academy were helpful.

arizonawet.arizona.edu/programs/teacher_academies

Tucson STEM Academy

Teachers explore Tucson Water's Reliability Mission:

- 1. Water Supply
- 2. Operations & Systems
- 3. Water Quality
- 4. Water Conservation & Efficiency

water.tucsonaz.gov/water/conservation

Working STEM Definition

STEM education is an interdisciplinary approach to learning which removes the traditional barriers separating the four disciplines of science, technology, engineering and mathematics, and integrates them into real world, rigorous and relevant learning experiences for students.

from Helios Foundation

Workshop Objectives Critical Thinking – Problem Solving

- Integrate real-world content into instruction
- Explore STEM careers
- Use APW lessons to bring local relevancy in to the classroom
- Engage in engineering projects/lessons in relation to water topics
- Implement water conservation projects that save water
- Utilize a wide variety of Technology Tools

STEM Academy Overview

- 1. Water Supply
- 2. Operations & Systems
- 3. Water Quality
- 4. Water Conservation & Efficiency

Water Supply &

Hydrology - Groundwater

Hydrology – Groundwater Movement

Hydrology – Groundwater Movement

Well Name	Latitude	Longitude	Well Elevation (Ft AMSL)	Depth to Groundwater (ft. BLS)	Water Table Elevation (Ft AMSL)
WR-092B	32° 16' 30.46"	-111° 1' 26.14"	2262	152	
WR-200A	32° 17' 14.21"	-111° 1' 58.04"	2243	159	
WR-201A	32° 16′ 51.44	-111° 1' 17.11	2261	153	

Hydrology - Watersheds

Marana

Tohono O'odham

Baboquivari Mountains

MEXICO

Sahuarita

Conceptual understanding with Project WET lesson

Expands into understanding Tucson's watersheds

Colorado River Watershed

Central Avra Valley Storage and Recovery Project

Water Sources

2

Operations & Systems &

SCADA Control Center

Water
Distribution
System

Engineering

Urban Water Cycle

Tucson's Urban Water Cycle

Lessons

Operating Recharge Basins Focus Question:

How do water managers calculate the amount of reclaimed water being intentionally recharged through a basin?

Recharge Basin	Area (ft²)	Depth (ft)	Volume (ft³) Area x Depth	Volume x 7.48 (gal)	Volume Recharged (gal) Volume x 0.98				
Total	Total Volume of water recharged through all basins for each filling event.								

<u>Areas</u> Triangle	$\frac{1}{2} \times b \times h$	(h=vertical height)	height base
Rectangle	$w \times h$	(w=width)	height width
Circle	πr^2	(r=radius)	
Trapezoid	$\tfrac{1}{2}(a+b)\times h$	(h=vertical height)	↓ h
Ellipse	πab	(π x ½ width x ½ length)

Engineering Design Challenge

	Α	В	С	D	E	F	G	Н	- I			
1	Calculat	ing Press	sure Loss	s - Equivaler	nt Pipe Length Meth	nod						
2												
3	Project:			EM Academy	Note!							
4	Date:	L	6/17/13			Adapt to the flow and pressure loss units to the data available for your system						
5	Piping Mat	erial:	Steel Sched	dule 40	Equivalent Length of Com Pressure Loss	ponent						
					Pressure Loss							
7	Imperial	Units										
8	Section	Pipe Size (inches)	Flow (gal/min)	Pressure Loss (ft/100ft)	System Components	Equivalent Length of Component (ft)	Number of Components	Equivalent Length (ft)	Total Pressure Loss (ftH2O)			
9	Path A	10			90 deg Elbows	18.0	2.0	36.0				
10												
11					45 deg Elbows	9.0	8.0	72.0				
12												
13					Gate Valves	3.2	5.0	16.0				
14												
15					Globe Valve	310.0	2.0	620.0				
16												
17					Straight Pipe	1.0		0.0				
18												
19		10	750.0	0.26				744.0	1.9			
20					Elevation Delivery							
21					Elevation Starting							
22					Total Elevation Ch		0.0					
23						Total Pr	essure Loss	Path A	1.9			
24												

STEM Careers

3

Water Guality

Data Analysis with Google Maps Engine Lite

Water efficiency &

- 1 Getting Their Feet Wet: A Home Water Audit
 - 2 Plunging In: The School Inventory

Indoor Audit

- 3.1 Structured Inquiry: Bathroom Faucet Audit
- 3.2 Guided Inquiry: Classroom Faucet Audit
 - 3.3 Guided Inquiry: Cafeteria Audit
- 3.4 Student-driven Inquiry: Student-led Audit

Outdoor Audit

- 3.5 Structured Inquiry: Athletic Field Audit
- 3.6 Guided Inquiry: Non-athletic Field Audit
- 3.7 Student-driven Inquiry: Student-led Audit

4 - Resurfacing: Communicating Data & Recommendations

Distribution Uniformity

Sprinkler Locations on a Rectangular Athletic Field

Indoor Audit

Teacher N	Name: Student Name: Class Period: Group #: Date:										
	Appendix 3.1.D: Measure Bathroom Faucet Flow Rate Data Sheet										
Inquiry Question											
Location	ation Location 1: Location 2: Location 2:										
Α	B C D E										
Faucet # ☑ If metered	☑ if Leak -ing	Baseline flow rate (existing condition i.e. with old aerator or no aerator)? (How many ml in 5 seconds?)	Flow rate without aerator? (How many ml in 5 seconds?)	Flow rate with new aerator? (How many ml in 5 seconds?)	Notes and Comments (Leak level / GPY)						

Inquiry Question	How much water is used by students and teachers washing their hands at bathroom faucets each year?													
Location	Locati	ion 1:						Location	2:					
Α	В	ocation 1:					ı	D			ı	E		F
Faucet # ☑ If metered	☑ if Leak -ing	Baseline flow rate (existing condition i.e. with old aerator or no aerator)? (How			Flow rate without aerator? (How many ml in 5 seconds?)			Flow rate with new aerator? (How many ml in 5 seconds?)				Notes and Comments (Leak level / GPY)		
		1	2	3	Avg	1	2	3	Avg	1	2	3	Avg	
Location 1														
Location 2														
Total							'	•	·					
Average														

Excelets

 "<u>Excelets</u> are interactive Excel spreadsheets or simulations of mathematical models."

F4 💠 😸 🛇) (fx = D4*E4				<u> </u>	
A	В	С	D	E	F	
		Brush	ing Teeth			
Teeth Brushing Time with H2O Running (secs)	Amount of H ₂ O Used each time (gal)	# of Times Brush Teeth Each day	Amount of H ₂ O Used each week (gal)	# of People in Family	Amount of H ₂ O Used each week by Family (gal)	
44	2.2	2	30.8	4	123.2	
Based upon 3 gal/min	flowrate					

Technology

Content Knowledge

Content Knowledge

Summary

- Teachers' mastery/knowledge of water content increased an average 50.3%
- We have educated 48 teachers in Real World, Rigorous and Relevant learning that translates into quality STEM teaching for the 5,815 students they teach

Tucson STEM Academy

- Water Professionals
- Site Visits
- Resources

- Education Experts
- Applied Lessons
- Curriculum Guides

Contact Information

Kerry Schwartz

Director, Arizona Project WET Associate Specialist, Extension kschwart@cals.arizona.edu 520-621-1092

Betsy Wilkening

Education Coordinator

ewilkening1@email.arizona.edu

520-621-8673

The University of Arizona
Water Resources Research Center
350 N. Campbell Ave.
Tucson, AZ 85719
(520) 621-9591

arizonawet.arizona.edu