This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Suspect Measurement of Customer Consumption: Customer Metering Challenges in the Drinking Water Industry

WaterSmart Innovations
Las Vegas, NV
October 9, 2014

George Kunkel P.E.

Philadelphia Water Department george.kunkel@phila.gov

IWA / AWWA Water Balance

Importance of Customer Meter Data

- Sends price signal to customers
- Water conservation
- Water loss control
- Hydraulic modeling (demands)
- Quantify community water needs:
 - Locally: infrastructure modeling/sizing
 - Regionally: water resources management

Customer Metering Applications

♠ Residential (small)

♦ Commercial/industrial (large)

♦ Fire Service

Residential Fire Service

Apparent Loss from Meter Inaccuracy occurs due to:

- Poor Selection of Meter for the given application
- ♦ Poor installation
- Poor surveillance and management of the meter population
- Key focus areas
 - Small (residential) meters less complexity (except for residential fire sprinkler systems)
 - Large (commercial, industrial) customers greater complexity in management due to many different sizes and types of meters

Poor Installation

Who conducts the meter installation?

Meter installed upside down

- How are permits issued for new installations?
- Is there an inspection process?

Bank of meters not installed horizontally

Service Line Sizing and Metering of Large Customers

- ♦ AWWA M22 Publication provides guidance
- ♦ Historic guidance derived from Hunter Curves (1941)
- Guidance now results in many lines/meters being oversized relative to low consumption and peak flows
- New data collection and research is needed
- New guidance should be coordinated with governing plumbing codes and International Association of Plumbing and Mechanical Officials (IAPMO) – Pipe Sizing Task Group
- ♦ AWWA Customer Metering Practices Committee is striving to launch a data collection process to establish basis for an updated rational method for large meter and service line sizing

Traditional Large Meter Types

- ◆ Positive Displacement meters

 commonly used in the residential setting but also appears in larger sizes up to 2-inch
- ◆ Turbine meters designed to measure steady, moderate to high flows; often used for large sizes of 3-inch and up
- ◆ Compound meters designed to measure varying flows from low to high; used typically in sizes of 3inch to 8-inch

1-1/2 inch
PD meter at
apartment
building

10-inch
Badger
Turbine Meter
at medical
facility

4-inch compound meter in a high school

Emerging Metering Technology

- Single Jet Meters
- Solid State Meters
 - Non-mechanical meters free of moving parts
 - Electro-magnetic meters
 - Ultrasonic meters
- Advantage: strong accuracy at both high ad low rates of flow, even in large sizes

Single Jet Meter

Sensus iPerl Magnetic Meter

Badger Ultrasonic Meter

Solid State Metering Technology

- - Long Battery life is making these meters feasible for the retail customer setting
 - Ultimate battery life "to be determined"
 - Loss of power = loss of meter readings
- ♦ Wave of the future some manufacturers are moving away from mechanical meters

Badger Magnetic Meter

Badger Ultrasonic Meter

- Coca Cola Bottling Plant
 - 6-inch Sensus compound meter
 - Data-logging data collection: Sept 2010

Wide variations in flowrate occur. This meter is adequately sized, but a different meter (single jet) might register more flow

- Coca Cola Bottling Plant
- ◆ Time profile and economic analysis
 - Potential payback in 0.6 year with single jet meter, which costs \$4,050

Projected Annual Savings	Monetary (\$/year)	Volume (kgal/year)
Sensus Total Apparent Losses	\$10,900.45	1,870.28
Actaris Total Apparent Losses	\$3,562.33	611.22
Savings from switching from Sensus to Actaris	\$7,338.12	1,259.06

- St. Joseph's University – Drexel Library
 - 3-inch ABB turbine meter

Note: flow through this meter is zero for 97% of the data-logged values. The above graph shows the profile for the remaining 3% of data values. This meter is dramatically oversized, but typical of many such buildings.

♦ St. Joseph's University

- Drexel Library
- Time profile and economic analysis
 - Potential payback in 46 years with single jet meter, which costs \$2,014

Range

2.00				
4.00				
6.00				
8.00				
10.00				
12.00	Projected Appare	nt Loss Volume Per Year		

Projected Annual Savings	Monetary (\$/year)	Volume (kgal/year)
ABB T3000 Total Apparent Losses	\$63.40	10.09
Actaris Total Apparent Losses	\$19.37	3.08
Savings from switching from ABB T3000 to Actaris	\$44.04	7.01

Range

Range

Water Rate Structure – Service Charges

♦ Service Charges – can be a disincentive to the water utility to right-size an over-sized meter

Philadelphia Water Department - Monthly Service Charges 2014			
Meter Size, in	Monthly Water	Monthly Sewer	Combined Monthly
	Charge	Charge	Charge
5/8	\$6.46	\$6.55	\$13.01
3/4	\$7.49	\$8.04	\$15.53
1	\$9.98	\$11.39	\$21.37
1-1/2	\$15.56	\$19.24	\$34.80
2	\$23.05	\$29.31	\$52.36
3	\$39.64	\$52.07	\$91.71
4	\$69.00	\$89.15	\$158.15
6	\$133.60	\$174.77	\$308.37
8	\$208.47	\$275.38	\$483.85
10	\$302.43	\$398.07	\$700.50
12	\$530.00	\$715.77	\$1,245.77

Water Rate Structure – Service Charges

♦ If service charges are high then improved meter accuracy without a size change is an advantage

Philadelphia Water Department - Monthly Service Charges 2006			
Meter Size, in	Monthly Water	Monthly Sewer	Combined Monthly
	Charge	Charge	Charge
5/8	\$4.61	\$16.03	\$20.64
3/4	\$5.15	\$82.09	\$87.24
1	\$6.60	\$133.22	\$139.82
1-1/2	\$9.69	\$260.07	\$269.76
2	\$14.04	\$413.44	\$427.48
3	\$23.46	\$77.03	\$793.49
4	\$41.42	\$1,287.62	\$1,329.04
6	\$79.37	\$2,568.89	\$2,648.26
8	\$122.76	\$4,102.58	\$4,225.34
10	\$178.65	\$5,901.45	\$6,080.10
12	\$305.82	\$10,981.96	\$11,287.78

Customer Metering: Food for Thought

- Metering of customer consumption is beneficial for many reasons
- ♦ Accurate customer metering can be compromised by:
 - Poor knowledge of meter population demographics by utility managers
 - "Blind" adherence to traditional metering practices or manufacturer guidance
 - Poor oversight of meter permitting, installation and data collection processes
- Water utility managers can promote accurate metering by:
 - Proactive management of the meter population
 - Transition from traditional guidance to emerging guidance for meter sizing and type
 - Pilot new meter types, particularly if service charges are high