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WRF Project 4263: Changes in Water Use
under Regional Climate Change Scenarios

m Objective: Increase the adaptive capacity of water utilities to plan
and adapt to changing climate

m Used data from participating utilities to

e |lllustrate importance of observed climate in shaping observed
seasonal patterns of water use

Review weather-demand modeling techniques

Identify sources of climate projections that are applicable to
weather-demand models

Demonstrate techniques for case study utilities




@ Modeling case study

°Colorado Springs Utilities (CO)
oSan Diego County Water Authority (CA)
o Durham Region (Ontario, Canada)

o Massachusetts Water Resources
Authority (MA)

oTampa Bay Water (FL)

oSouthern Nevada Water Authority/Las
Vegas Valley Water District (NV)

@Gwinnett County (GA) Department of
Water Resources

AIbuquerque-BernaIiIIo County Water
Utility Authority (NM)

@City of Phoenix (AZ)
(10) Seattle Public Utilities (WA)




Projected Weather Changes Under Climate Change
Scenarios

m Data now available for projected weather variability in
response to climate change at geographic scales
comparable to moderate-large service areas

Fine-scale weather
simulations under climate
change scenarios

Climate fqrcmg Future GHG Levels, Earth
assumptions Orbit, Solar Output, etc.

¥

Global Circulation
Models (GCMs)

' - urface Air Te rature Chanae [
Global climate model (GCM) outputs .

GCM
downscaling




From Downscaled Climate Change Projections to
Demand Impacts

Weather station(s)
within utility

service area

Downscaled
GCM/CHG scenarios
¢ for grid cell(s) containing

: utility service area Implied
ﬁ Future
A or %A Weather

weather

Predictions under
historical weather

Predictions under
climate change
scenarios




Selection of Climate Scenarios

Bias-Corrected Constructed Analog (BCCA) section of the
World Climate Research Programme's Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model dataset

Daily time scale at 1/8 degree geographic grid resolution
e Tmin, Tmax, Precip
Projections for 2 time slices

e 2055 slice: 2046 through 2065
e 2090 slice: 2081 through 2100




Selection of Climate Scenarios

m Select one or more
grid cells

Typically grid
cell(s) containing
weather station(s)
used for historical
weather




General Model Development Approach
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Colorado Springs Case Study




Colorado Springs Utilities

10-year historical production
record

Developed model of weekly
production as a function of
weather

Applied historical and
projected weather to model

e 30-year historical weather
record

e multiple 20-year projected
weather records

Determined relative (percent)
changes in demand from
historical weather to each
scenario
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Colorado Springs Model

m Linear base trend with time

m Weekly detrended seasonal demand is function of concurrent
and lag values of

Dry-week* Demand vs. Temperature
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Climate Change Scenarios: Colorado Springs

Temperature

Annual and Seasonal Averages
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Climate Change Scenarios: Colorado Springs
Temperature

Seasonal Distributions
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Climate Change Scenarios: Colorado Springs
Precipitation

Annual and Seasonal Averages

Historical and 2055 Projected Weekly Mean Total Precipitation for CSU
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Climate Change Scenarios: Colorado Springs
Precipitation

Seasonal Distributions
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Climate Change Scenarios: Colorado Springs
Demand
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Climate Change Scenarios: Colorado Springs
Demand

Seasonal Distributions

Cool/Wet 2055 Cool /Dry 2055 Moderate 2055 Hot/Wet 2055 Hot/Dry 2055

=
=]
IJ
=]
(=]
]
o
=]

=]
R
o o

[e]
=]
=]
[=]
oa
L=
oo
[=]
=]
[=]

40

F-9
=

40

'
[=}
S
(=]

]
(O]
=
k-]
=
n
E
o
(=]
.
o
[

Total Demand, MGD

Total Demand, MGD

Total Demand, MGD

Total Demand, MGD

| S —— 1 S S — | R S s—— 0 brvomedemedesmeviosemee P} S S —
1 14 27 40 1 14 27 40 1 14 27 40 1 14 27 40 1 14 27 40
week (1-52) week (1-52) week (1-52) weaek (1-52) week (1-52)
Cool/Wet 2090 Cool/Dry 2090 Moderate 2090 Hot/Wet 2090 Hot/Dry 2090

80
40

80
a0["

Total Demand, MGD
Total Demand, MGD
Total Demand, MGD
Total Demand, MGD
Total Demand, MGD

D = e e == = O—m=c— e
1 14 27 40 1 14 27 40 1 14 27 40 1 14 27 40 1 14 27 40
week (1-52) week {1-52) week (1-52) week (1-52) week (1-52)

| [ | Historical 5,95 His torical medi Projection 595 Projection l




Technical Implications for
Demand-Weather Models




Important Technical Implications for Demand-
Weather Models

m When developing weather-demand models for climate
change assessments, results impacted by

Model time scale
Model specification (equation form)
Weather variable selection

Inclusion or exclusion of fixed-effect seasonal
Instruments (e.g. dummy variables, oscillating seasonal
functions)

Choice to model sectoral (retail) demand versus total
production demand

Inclusion/exclusion of economic variables




Model Time Scale

m Impacts of climate change on demand will arise primarily at
seasonal and sub-seasonal level

e changes in seasonal norms

) . o Historical and 2055 Projected

e changes in short-term variability 8.y, CSU Mean Weekly Demand
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Demand Data Selections

m Production data vs. retail (billing) data
e strengths and weaknesses of each

: ‘l Easy to align with weather
S Observations?

Yes: fine, regular time scale No: coarse, irregular time scales

Easy to classify by customer No: only represents total Yes: from customer
sector? use classifications

Accounts for unmetered

consumption and water loss? Yes (implicitly) No

Yes, but primarily non-
sector-specific
conditions/metrics

Yes, and particularly to sector-
specific conditions/metrics

Relatable to economic conditions
and efficiency metrics?

PD-SW0L0_ fn.ppt
-




Weather Data

m Weather variables must be derivable from both
historical and projected weather data

m Weather variables should have physically rational
Impact on demand

Total Precipitation Length of Cold/Warm or Wet/Dry Spells
Mean Max Daily Temperature (Consecutive Time Periods
Total ET Above/Below Threshold)

m Contemporaneous, lag values as needed




Weather Data

m Avoid fixed-effect seasonal variables (seasonal dummies,
harmonics, etc.) derived from historical weather

e Often used to decouple historical climate from actual weather

e Propagate historical repeating water use patterns onto future
. polcyrorum|

climates that may differ
considerably

Treating future weather as
perturbations from historical
climate may not be adequate

m Instead, try to use actual
weather measurements as
the seasonal instrument

CLIMATE CHANGE

Stationarity Is Dead:
Whither Water Management?

P.C. D. Milly,'* Julio Betancourt? Malin Falkenmark.? Robert M. Hirsch.* Zbigniew W.
Kundzewicz? Dennis P. Lettenmaier? Ronald J. Stouffer’

ystems for management of water
S hroughont the developed world have
besn designed and operated under the
assumption of stationarity. Stationarity—the
idea that natural system:
unchanging alope of W y
foundational concept that permeates trainmg
ter-Tesource engimesrng. It

ant (or 1-year—periodic) probability density
function (pdf), whose properties can be esti-
mated from the instrument record Under sta-
tionarity, pdf estimation errors are acknowl-
edged, but have been assumed to be reducible
by additional observations, more sfficient
sstimators, or ragional or palechydrologic
data_ The pdfs, in turn, are used to evaluate
and manage risks to water suppliss, water—
works, and floodplains; annual global invest-

infrastructure  excesds

v assumption has long

been compromised by human disturbances
basins. Flood risk, water supply, and

v are affected by water infra-

structure, channzl modifications, drainage
works, and land-cover and land-use change
Two other (sometimes indistinguishable)

An uncertain future challanges water planners.

In view of the magnitude and vbiguity of

Climate change undermines a basic assumption
that historically has facilitated management of
wiater supplies, demands, and risks.

that has emerged from climate models (see
Figurs, p 574)
Why now? That anthropogenic climate
cts the water cycle (#) and water
10)isnot anew finding. Navartheless,
sensibls obj y
have been raised. For a time, hydrochimate had
not demonstrably exited the envelope of natn-
variability and'or the effective range of
ptimally operated infrastructure ( 12)
Accounting for the substantial uncertainties
of climatic parameters estimated from short
) effectively hedged against small

opinion that the time has come to move
beyond the wait-and-see approach. Pro-
jections of runoff chang:
recently demonstrated refrodictive skill of
mate models. The global pattern of observed
annual streamflow trends 15 unlikely to hav
arisen from unforced varizbility and is consis-
ons to climate forcing
{ gic studies s that
small changes in mezn climate might produce
large changes in extremes (I4), although
attempts to detect a recent change in
flood frequency have been equivacal




Model Form

Identify and include nonlinear relationships between demand
and weather as necessary

Temperature vs demand for Colorado Springs is a perfect
example: linear demand vs temperature would have

e OQOverestimated mid- Piecewise Linear Relationship between Dry-Week
temperature demand Demand and Temperature

I I I I
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Underestimated cold-and
high-temperature demand

O Weeks with zero precip, no outdoor use
restrictions
=@—Piecewise Linear Fit
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Unrealistically suppressed
projected summer demand
impacts

outdoor use restrictions)
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Extrapolation Concerns

Weather conditions under climate change scenarios may (likely will)
extend beyond the historical range

Nonlinear relationships that seem reasonable within historical
weather conditions may lead to unexpectedly extreme results

Even in linear relationships, weather variable specifications can be

sensitive to small changes in climate
Piecewise Linear Relationship between Dry-Week

e e.g.large changes in threshold Demand and Temperature

5 . 300 I I I I
variables (durations of hot or dry o Al vesks

spells) from small changes in 207

normal weather

© Weeks with zero precip, no outdoor
use res trictions

=@~ Piecewise Linear Fit

200

150

m Exponential demand vs temp

Monitor weather model behavior
outside the historical range... is it
still reasonable?

100

50

Seasonal Demand, MGD

0

-50

20 30 40 50 60 70

Temperature, F







Demand Models for Climate Change Studies:
Important Technical Considerations

Time scale should be fine enough to allow simulation of
seasonal/sub-seasonal impacts.

Choice of demand variable (production vs. sales) depends on need
to address economic, sector-specific impacts.

Weather variables must be derivable from both historical and
projected data sources.

Seasonal variables (dummies, harmonics) that directly account for
historical normal seasonality should be avoided... weather itself
should serve as the seasonal instrument.

Nonlinearity in weather-demand relationships should be sought and
represented in models when encountered.

Models must not just reproduce historical conditions well... they
must also be reasonable when presented with weather conditions
outside historical ranges.
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