This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Designing Water Harvesting Systems

to Maximize Total Water Savings

Session T-1329

John R. Bauer

JohnB@Wahaso.com 630-235-2143

Wahaso water harvesting solutions

What is "Water Harvesting"?

Water Harvesting is the collection, cleaning, storage and reuse of onsite water sources for non-potable uses to reduce the consumption of municipal potable water.

The Harvesting Opportunity in Commercial Properties

1-5 Million Gallon Opportunity Per Year

Most Water Use in Commercial Buildings can be Replaced with Harvested Rainwater and Stormwater

^{© 2013} Water Harvesting Solutions, Inc.

System Design Objectives

- Make a significant and meaningful impact on reducing the amount of municipal water use
- Match a system to meet the unique characteristics of the building
- Ensure that the water is safe for storage & application
- Keep the system as simple as possible
- Keep the system cost-per-gallon saved as low as possible

Maximize the System Value By Focusing on its Efficiency

High Efficiency Means:

Achieving the highest possible percentage of municipal water replaced with non-potable water

With the least cost system

Strategies for an Efficient System

- Identify and quantify all potential sources and uses of on-site water for reuse.
- Look at total supply and demand but also their seasonality to balance the two.
- Design a system for the most-contaminated water source
- Optimize the cistern size
- Identify options and their relative cost & benefit
- Create metrics and goals for the system

The Most Efficient Systems Often Capture Multiple Sources for Multiple Uses

Potential Sources

- Rooftop rainwater
- Cooling condensate
- Surface stormwater
- Greywater from showers, sinks, washers
- Steam condensate
- Groundwater ejectors
- Process wastewater

Potential Uses

- Landscape irrigation
- Toilet flushing
- Cooling tower "make-up"
- Vehicle washing
- Boiler "make-up"
- Washing machines

Each Source Has Different Variables & Process Considerations

Best Retrofit Opportunities

Increasing

Contaminants and Processing

Sources	Definition	Quantifying Variables
Condensate	From cooling system blower units or steam systems	Total cooling capacity, average humidity, seasonality
Groundwater	From below-grade sumps (around basements)	Ground permeability, springs, seasonality
R/O Discharge	Effluent discharge from R/O system (20-35%)	Average % discharge X total R/O processed, source quality
Rainwater	From roofs and above-ground collectors	Roof square footage, historic rainfall for location
Reclaimed Water	Municipally-treated sewage for reuse	GPM available, color/odor
Stormwater	From ground surfaces – Parking lots, run-off	Square footage by hardscape/ softscapes/parking, rain history
Greywater, Gray Water	Untreated waste water "gently used" in showers, sinks, processes	Number occupants, # showers, # hand washes

Each Use Has Different Variables

Best Retrofit Opportunities

Uses	Variables for Quantifying Demand
Irrigation	Square footage irrigated, plant types, soil types, seasonality, location
Toilet Flushing	Number of occupants, flushes per person per day, GPF, toilet/urinal flush ratio
Cooling Tower Make- Up	Total cooling load, seasonality, location, average humidity, cycles per blow-down
Boiler Make-Up	Total heating load, HVAC expert estimate or historical data.
Vehicle Wash	Number of vehicles per day, gallons per vehicle wash
Miscellaneous	Varies – Washing machine supply, R/O supply

Consider Seasonality of Sources & Uses in Balancing a System

	Warm Weather	Cool Weather	Non-Seasonal
Sources	Rainwater +	Rainwater -	Greywater
	Stormwater +	Stormwater-	Groundwater
	Cooling Condensate	Steam Condensate	Reclaimed Water
			R/O Discharge
Uses	Irrigation	Boiler Make-Up	Toilet Flushing
	Cooling Tower M/U	Humidifier Make- Up	Laundry
			Vehicle Wash

Evaluate Monthly Supply & Demand → Optimize Total Annual Savings

Projected Annual Averages Based On Past Six Years of Actual Daily Rainfall

		Harvested Gallons		Total Days Requiring
Total Supply	Total Demand	Used	Municipal Gallons Used	Municipal Make-Up
1,311,799	1,213,949	854,438	359,511	69

Supply refers to all of the potential non-potable water that can be harvested. Table-3 breaks down the total municipal gallons into monthly segments. This is helpful in discovering seasonal shortfalls in the system.

Cistern Modeling Identifies Optimal Rainwater Storage Capacity

Different cistern
size options are
modeled using
six years of daily
rainfall history
for the location

	% of Total		Gallons Change from	of Being Handled
Cistern Size	Demand Met	Non-Potable Gallons Used	Previous Increment	(inches):
5,000	52.45%	227,422	-	2/5
10,000	71.40%	309,612	82,190	4/5
15,000	81.21%	352,163	42,551	1 1/5
20,000	86.77%	376,252	24,089	1 3/5
25,000	89.88%	389,752	13,501	2
30,000	92.31%	400,280	10,527	2 3/8
35,000	94.01%	407,628	7,348	2 7/9
40,000	95.28%	413,164	5,536	3 1/6
45,000	96.18%	417,045	3,882	3 4/7
50,000	96.58%	418,808	1,763	4
55,000	96.97%	420,475	1,667	4 1/3
60,000	97.35%	422,142	1,667	4 3/4
65,000	97.74%	423,808	1,667	5 1/6
70,000	98.12%	425,475	1,667	5 5/9
75,000	98.51%	427,142	1,667	6
80,000	98.89%	428,808	1,667	6 1/3
Table - 1				

Pain Event Size Canable

Storage Costs \$1.50-3.50 Per Gallon Installed!

Regardless of the Source, We Want to Achieve One Standard Output

Basic Components of Every System

Processing Steps Added as Contaminants Increase

Sources	Processing Approach
Condensate	10u filter, U.V.
Groundwater	10u filter, U.V.
R/O Discharge	10u filter, U.V.
Rainwater	Pre-filter (150u), Primary Filter (50u), Final filter (5 u), U.V. or Chlorine
Reclaimed Water	Pre-filter (150u), Primary Filter (50u), Final filter (5 u), U.V. or Chlorine, Carbon Filter (odor/color)
Stormwater	Pre-filter (150u), Oil Separator/Absorption, Primary Filter (50u), Final filter (5 u), U.V. or Chlorine
Greywater, Gray Water	Settling Tank, Chlorine, Floating Filter (250 u) Primary Filter (70u), Final filter (10 u), U.V.

Typical System Design

Case Study: Gowanus Whole Foods, Brooklyn, NY

Gowanus Whole Foods, Brooklyn

Project:	Gowanus Whole Foods
Location:	Third Ave. & Third Street, Brooklyn, NY
Customer:	Whole Foods, NY
Engineers:	BL Companies
System Type:	Multi-Source, Multi-Use
Considerations:	Maximize Water Savings, Contaminated Soil
Storage:	30,000 Gallons Steel Wrapped PVC
Sanitation:	Chlorine (Calcium Hypochlorite) & U.V.
Projected Annual Water Savings:	1,617,00 gallons (72% of Demand)
Commissioning Date:	Q1 2014

Toilet Use & Greywater Calculations

Greywater Supply/Toilet Flushing I	Demand Analysis	- Whole Foods I	Brooklyn	
	Toilet Flushi Assum	ng Demand ptions		
	Total	Head Count	Flushes/ Day	
Employees (FTE) ¹		286	3	
Customers		9,285	0.5	
Total Flushes Per Day	5,501			
Percentage Female	50%		2750.25	
Percentage Male	50%		2750.25	
Male Urinal Use	75%			
Male Urinal Flushes	2,063			
Male Water Closet Flushes	688			
	Female Water Closets	Male Water Closets	Urinals	Total
Uses Per Day By Fixture	2,750	688	2,063	5,501
GPF	1.15 (Avg Based on			
	Dual Flush 1.6/1.0)	1.6	0.0	
Total Gallons Demand For Flushing Per Day of Use	3,162.8	1,100.1	-	4,263
Commente Commente de sete de dese				
Lavatory Sink Lises (Washroom Post Toilet)	5 501			
Employee Compliance Hand Washings ⁴	5,301			
Sink Flow Rate (GPM)	2 5			
Sink Use Duration for Washrooms (min)	2.5			
Employee Sink Duration for Compliance (min)	0.12			
Total Greywater Supply Per Day of Use	1,865			
Building Assumptions				
¹ Based on 400 Employees. (400 Employees x 40 Hours	s) / 8 Hour FTE Shifts			
= 2,000. 2000/ 7 Days = 286 FTE Per Day				
² It Is Assumed That The Dual Flush Toilets Are 1.6/1.0, and that the 1.0				
Flush Is Used 75% Of The Time.				
³ It Is Assumed that Males Will Use The 1.6 GPF Of The Dual Flush Toilets				
When Not Using the Urinal (25% of The Time)				
⁴ 60% of Employees Will Wash Their Hands 3X Per Day Above and Beyond				
Toilet Uses at 10 Seconds Per Washing.				

Toilet Flushing Demand

Total Daily Employees + Guests

X Flushes per person

X Gallons Per Flush

Greywater Supply

Total Daily Employees + Guests

X Lav uses per person

X Gallons per use

Irrigation Demand Based on Estimated E.T. Requirements Net of Rainfall

If we have estimated landscape irrigation requirements for you, then we have used an "ET" model that estimates the water required by plants based on their "evapo-transpiration" which takes into account the type of plant and the weather conditions. Ours is a rough estimate that gives us a daily water requirement by zone type. Then our model subtracts the average rainfall for your area to estimate the amount of irrigation the system will need to provide.

		Percentage	Square Footage	
A. Trees, Groundcover	20%	7,010		
B. Shrubs, Perennials		80%	28,040	
C. Cool Season Turfgrass, Annuals		0%	-	
D. Warm Season Turfgrass		0%	-	
Total Irrigated Square Footage		100%	35,050	
Percentage of rainfall reaching plants a	after evaporation	75%		
Reference Evapo-transpiration in inche	es per month - based on			
cool-searoph grasses in this area:		8.00		
Irrigation System Efficiency (% of water reaching plants)		Input by Zone		
	2	· · · ·		
			Average Daily	
	Monthly Gross Water	Gross Monthly Water	Requirement Before	
	Requirement (Inches)	Requirement (Gallons)	Rainfall (Gallons)	
A. Trees, Groundcover	5.20	22,721.4	1,419.0	
B. Shrubs, Perennials 5.20		90,885.7	5,675.9	
C. Cool Season Turfgrass, Annuals 5.20		-	_	
D. Warm Season Turfgrass 4.80		-	-	
TOTALS		113,607	7,095	
ANNUAL DEMAND (Gallons)			697,839	

System Approach

- Capture filtered rainwater into 30,000 gallon belowgrade cistern in parking area
- Capture raw greywater into ejector pit
- Process greywater as collected through multi-stage filter; chlorinate
- Process rainwater through same system
- Hold common processed water in 1,500 gallon tank
- For toilets and irrigation:
 - 1. Processed greywater
 - 2. Processed rainwater
 - 3. Municipal make-up

Whole Foods System Design

^{© 2013} Water Harvesting Solutions, Inc.

System Effectively Treats Greywater For Reuse

Custom Chlorination System

Innovative Pump Assembly Inside Cistern

System Will Tie to BAS & Be Monitored Via Web Interface

🔶 🔶 Back Forward Data AddThis 🕪 dagconnect.com https://www.dagconnect.com/dag/page.do?id=A3A8388F-412E-4CBA-9B46-568DFB65FD3D

DAC Connect

Water Usage City Water: 16662 gal Grey Water: 506 gal

	Electrical
L1: 2.04 A	478.4 V
L2: 2.04 A	5.200 kW
L3: 0.88 A	1559.6 kWh

Alarms

Boost Pump A	Clean High Level	Gr Feed Valve A
Boost Pump B	Clean Low Level	Gr Drain Valve A
Pressure Sensor	Clean Lvl Sensor	Gr Feed Valve B
Chlorine Low	Grey High Level	Gr Drain Valve B
Chlorine Sensor	Grey Low Level	Change Filter
City Water Low	Grey Lvl Sensor	Filter In Sensor
Transfer Pump		Filter Out Sensor
, 		

Time:

Status: Name:

Whole Foods Water Harvesting, Brooklyn, NY

Equipment Operation			
Boost Pump A	Sump Pump A		
Boost Pump B	Sump Pump B		
Recirc Pump	Transfer Pump		
Grey Valve A	Drain Valve		
Grey Valve B	Flush Valve		
Makeup ∀alve			

C^d Reload

🏫 🗗 🔻

X Stop

Diagnostics				
Comm Heartbeat: 26				
Alrm1: 0	Inputs1: 32768	Outputs: 8424		
Alrm2: 0	Inputs2: 39302			

System is Projected to Save Over 70% of Water Needed for Toilets & Irrigation

System Effectiveness Based on Recommended 30K Gallon Cistern

Projected Annual Averages Based On Past Six Years of Actual Daily Rainfall

		Harvested Gallons	Municipal Gallons	Total Days Requiring
Total Supply	Total Demand	Used	Used	Municipal Make-Up
3,031,617	2,258,827	1,616,861	641,966	112

Projected Monthly Supply & Demand

Theoretical % of Total Demand Met			
Based on These Past Years		6 Year Average	
2007	72.8%		
2008	71.6%		
2009	75.2%	71 70/	
2010	62.9%	/1./70	
2011	78.5%		
2012	69.4%		

Review: Strategies for an Efficient System

- Identify and quantify all potential sources and uses of on-site water for reuse.
- Look at total supply and demand but also their seasonality to balance the two.
- Design a system for the most-contaminated water source
- Optimize the cistern size
- Identify options and their relative cost & benefit
- Create metrics and goals for the system

Water Harvesting

For Commercial & Institutional Buildings

