This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Understanding the Implications of Reduced Flows in Building Drains

What is PERC?

- Formed in December of 2008
- MoU Signed at EPA HQ
- First Project: Drainline Transport
- MoU with AS-Flow in 2010
- Funding struggles

Why Drainline Transport?

- > Toilet consumption reduced 3.5 gpf \rightarrow 1.6 gpf \rightarrow 1.28 gpf \rightarrow ?
- Commercial installations
 - Isolated bathrooms
 - Long horizontal run building drains
 - Reduced supplemental flows
 - > Non-water consuming urinals, ultra low flow faucets (0.5 gpm)
 - Proliferation of other water efficient technologies; medical, food service, industrial and commercial processes
 - Foilets increasingly stressed
- Domestic installations
 - Reduced flow showerheads and appliances
 - Graywater reuse systems long term potential to eliminate long duration flows

Past Research

- 2009 Dry Drains Forum at ISH Fair 2009 CIB W062
 - Professor John Swaffield: No further research needed!
 - CIB Report Summarized Past Work
 - Discussions Followed
 - What makes the PERC study unique?

> ASFlow Research on Drainlines

- Non-water Consuming Urinals
- Horizontal Junctions
- Impact of Toilet Paper Selection
- Lacking in Past Research
 - Very long duration test sequences that incorporate deformable media with toilet paper
 - Determine relative significance of controllable system variables

Photo: ASFlow research on horizontal junction fittings

The PERC Approach

PERC Design of Experiment

- The "Real World": Too Variable to Duplicate / Characterize
- Need to Understand What's Really Important
- Build a Perfect Drainline
- The Test Apparatus
 - > 4" Clear PVC
 - 135 feet long (~41 M)
 - Slope Adjustable
- Why only 4-inch diameter? \$
- Clearing Flush: Low Cost Solution?
 - Past research (Swaffield) cited potential
 - Low cost solution using flushometer-valves?

The PERC Approach

Test Apparatus viewed from Flush Stand

Two 90° Wide Sweep Bends at Far End

The PERC Approach

Surge Injectors

- More Consistent than Toilets
- Control Flush Rate (2)
 - Threaded cap orifice
 - > 2500 ml/sec
 - > 3500 ml/sec
- Control % Trailing Water (2)
 - > 75%
 - > 25%
- Fest Volumes (3)
 - 1.6, 1.28, 0.8 gpf
 - (6.0, 4.8, 3.0 Lpf)

Test Media

➤Uncased "MaP" Test Media

 Proven "Realistic" in Toilet Testing
 Deformable, "breaks down"

➤Toilet Paper

Two US Brands
 Low Tensile Strength
 High Tensile Strength

Study Approach and Test Media Summary:

- Lacking in Past Research
 - Very long duration test sequences that incorporate deformable media with toilet paper
 - Determine relative significance of controllable system variables
- Cannot duplicate real world, run study on perfect apparatus
 - Only enough \$ for one pipe diameter and two slopes
- Develop a designed experiment that ranks controllable variables
- Replace toilets with accurate Surge Injectors
 - Control toilet flush characteristics to determine significance
- > Use realistic Test Media
 - > Uncased MaP Media / Toilet Paper

The Designed Experiment (DOE)

- > What is a designed experiment?
 - Groups test variables
 - > Assigns random test sequence
 - Improves accuracy and reduces test duration
 - Determine the relative significance of the test variables
 - > Uses pre-determined statistical model to analyze data
 - > Able to differentiate between "signal" (impact of the variables on the system) and "noise" (random occurrences in the system not attributed to the test variables)
- Analysis of Variance "ANOVA"
 - Statistical model best suited to rank test variables
 - Significance determined by low "P-value"

Deliverables

- 1. Clearing flush at the end of each Test Run
 - Is this a reliable low cost solution?
- 2. Ranking of test variables
 - I Pipe Diameter: 4-inch / ~100 mm
 - 2 Pipe Slopes/Pitches: 1.00%; 2.00%
 - ✓ 3 Flush Volumes: 6.0/1.6; 4.8/1.3; 3.0/0.8 (Lpf / gpf)
 - 2 Flush Rates: 3500; 2500 (ml/sec –peak flow)
 - 2 Percent Trailing Water Levels: 75%; 25%
 - Z Toilet Paper Tensile Strengths: High; Low

Execution of the DOE

- Test Sequence
 - > Total of 40 100 cycle *Test Runs* that capture the test variables
 - Random test sequence determined by computer
- How do we measure?
- Flushes to Out: the number of flushes it took for an individual injection of test media to run the 135 foot Test Apparatus course of in a Test Run
- Average Flushes to Out (AVO): the average Flushes to Out value in a Test Run after 100 flush cycles
- IMPORTANT The AVO scores were used to calculate all results

Bar Chart of Runs

- Trouble with 0.8 gallon (3.0 L) data
 - > Observation during Test Runs
 - 0.8 gallon test runs chaotic
 - Very high variability in AVO scores
 - Statistical review of 0.8 gallon data indicates:
 - Results are random
 and not attributed
 to the test variables
 Skews the overall test
 results significantly
 0.8 Test Run results
 are "out of control"

Factor	Type	Levels	Values
Volume	fixed	2	4.8, 6.0
Flush Rate	fixed	2	2500, 3500
Trailing Water	fixed	2	0.25, 0.75
Slope	fixed	2	0.01, 0.02
Paper	fixed	2	1, 82

<u>Variable</u>	<u>P Value</u>				
Volume	0.000*				
Flush Rate	0.216				
Trailing Water	0.185				
Slope	0.000*				
Paper	0.000*				

* P-values below 0.05 indicate significance of the test variable

R-Sq = 81.61 percent

How can we tell if the statistical model is telling us the right answers? Let's look at traditional charts!

Bar Chart of Runs - 6.0 data only

6.0 L (1.6 gal) data broken down by Slope

Flush Injection #

> 6.0 L (1.6 gal) data broken down by % Trailing Water

6.0 L (1.6 gal) data broken down by Flush Rate

6.0 L (1.6 gal) data – Main Effects Plots

Factor	Type	Levels	Values		
Flush Rate	fixed	2	2500, 3500		
Trailing Water	fixed	2	0.25, 0.75		
Slope	fixed	2	0.01, 0.02		

<u>Variable</u>	P Value				
Flush Rate	0.043*				
Trailing Water	0.404				
Slope	0.005*				

* P-values below 0.05 indicate significance of the test variable

R-Sq = 91.2%

> 4.8 L (1.28 gal) data only by slope

Bar Chart of Runs - 4.8 Lpf data only

> 4.8 L (1.28 gal.) data broken down by % Trailing Water

Flush Injection #

> 4.8 L (1.28 gal) data broken down by Paper Tensile Strength

Flush Injection #

> 4.8 L (1.28 gal) data – Main Effects Plots

> 3.0 L (0.8 gal) data only by slope

Bar Chart of Runs

> 3.0 L (0.8 gal) data broken down by Paper Tensile Strength

Flush Injection #

Deliverables

- 1. Clearing flush at the end of each Test Run
 - Reliable solution? No
 - > 5 gallon clearing flush failed to clear line in 7 of 39 trials
 - Further study warranted
 - Shorter intervals
 - Requires separate experiment
- 2. Ranking of test variables

Significant Variables	Insignificant Variables			
Slope > Paper > Volume >	% Trailing Water > Flush Rate			

Findings

		Main Effects, All Data, Less 3L Data Means				Factor Volume Flush Rate	Type Le fixed 2 fixed 2	Levels 2 2	<u>Values</u> 4.8, 6.0 2500, 3500
	10-	Volume	Flush Rate	2	Trailing Water	Trailing Water fixed 2		2	0.25, 0.75
	9-	•		_		Slope Paper	fixed 2 fixed 2	2 2	0.01, 0.02 1, 82
Mean	7-	•	•	•		Variabl	<u>e</u>		<u>P Value</u>
	6	1 1	2500	2500 0.25	0.75	Volume)		0.000*
		Slope	Paper	3500 0.20	0.25 0.75		Flush Rate		
	10-	٩				Trailing	Water		0.185
	9-	9-		<u> </u>		Slope	,		0.000*
	8	\rightarrow		·		Dopor			0.000*
	7-	0.01 0.02	10	82.0		* P-valu	es below	v 0.C	0.000)5 indicate
				significa	ince of th	e te	est variable		
		Level	Volume	Flush Rate	%Trailing Water	Slope	Paper		
		1	8.710	7.567	7.535	9.671	6.104		
		2	6.554	8.416	8.448	6.311	8.935	5	
		Delta	2.156	0.849	0.913	3.360	2.831		
		Rank	3	5	4	1	2		

Additional Findings

- <u>0.8 gpf / 3.0 Lpf Toilets</u>: Chaotic conditions resulted in the test apparatus at this discharge volume.
- <u>1.28 gpf / 4.8 Lpf HET's</u>: The behavior of the Test Apparatus at this volume level indicates satisfactory performance at this discharge volume.
- Impact of Toilet Flush Characteristics: Not significant factors in drain line performance in this study (further study req'd)
 - Will present finding to ASME / CSA Standards Committees
 - Is there a need for a DLT test in the industry toilet standards?
 - Good news regarding future long term research needs

Additional Findings

- Significance of Toilet Paper: Toilet paper characteristics have the potential to drastically impact DLT distances
 - Strong inverse correlation between wet tensile strength and DLT distances
 - Caution: Potential demonstrated in the PERC DOE characterizes the <u>extremes</u> of toilet paper influence
 - Easy test to determine
 relative wet tensile strength
 developed
 - Possible low-cost solution
 to mitigate DLT related
 blockages

Future Study Opportunities

- Different diameter pipe: 3-inch and 6-inch
- Intermediate slope and flush volume levels
 - Effect of slope as solids to water ratio increases
- Consumer "flushables" other than toilet paper
 - Toilet seat covers
 - Moisturized wipes
- Other pipe materials and simulated aging of pipes
 - Cast iron
 - "Bellies", FOG, Corrosion
- Explicit experiment for Clearing Flush at lower intervals
 - > Tipping and siphonic devices: Reliability? Code compliance potential?
 - Flushometer-valve approach: Will it save water?
 - Cost effective?

PERC's Future

- PERC was founded to align industry research efforts
 - Diverse and impressive technical skill sets
 - Other entities considered based on ability to contribute
- Ability to obtain funding will drive future activities
- Regarding future Drainline Transport Study
 - American Standard Brands remains a partner
 - This will make future DLT study extremely cost effective
- Funding
 - Hopeful that this study elevates interest in PERC
- How can YOU contribute?

Recognition of Contributors

- Without American Standard Brands contributions, this study would not have been possible
 - Allowing PERC to conduct study at Product Development Center in NJ
 - Allowing access by PERC Personnel
 - Expanding their DLT Test Apparatus to PERC specifications
 - Financial and In-kind Contributions
 - Assistance in obtaining experienced technicians
 - Assistance with the DOE development and data analysis
- Mr. C.J. Lagan Many hours of work

Recognition of Contributors

- Alliance for Water Efficiency
- American Society of Plumbing Engineers
- American Society of Sanitary Engineers
- Best Management Partners
- City of Calgary, Alberta
- Delta Faucet Company
- Donald Roberts, P.E.
- Duravit USA, Inc.
- Fort Collins Utilities
- Gerber Plumbing Fixtures LLC, a subsidiary of Globe Union Group, Inc.
- Hansgrohe, Inc.
- Hulsey Engineering

Recognition of Contributors

- International Association of Plumbing and Mechanical Officials
- International Code Council
- Koeller and Company
- Kohler Company
- Natural Resources Defense Council
- PlumbTech, LLC
- Plumbing Heating Cooling Contractors National Association
- Plumbing Manufacturers International
- Portland Water Bureau
- Sloan Valve Company
- Sonoma County Water Agency
- Southern Nevada Water Authority
- Veritec Consulting, Inc.
- Waterless Company

THANK YOU QUESTIONS?

Presenters:

Peter DeMarco – IAPMO, <u>pete.demarco@iapmo.org</u> John Koeller – AWE, <u>koeller@earthlink.net</u> Shawn Martin – ICC, <u>amartin@iccsafe.org</u>