## This presentation premiered at WaterSmart Innovations

watersmartinnovations.com









# Implications of Deficit / Surplus Irrigation for Targeting Conservation Programs

David Bracciano, Tampa Bay Water Lisa R. Krentz, Hazen and Sawyer

October 3, 2012

#### **Presentation Overview**

- Background
- Estimating Surplus / Deficit Irrigation
- Distribution of Surplus / Deficit Irrigators
- Potential for Program Implementation
- Implications for the Tampa Bay Region
- Conclusions



### **Background**



#### **Tampa Bay Water**

- Regional water wholesaler
- 6 Member Governments
- Baseline demand forecasted to increase

- 2011: ~ 230 mgd

- 2035: ~275 mgd





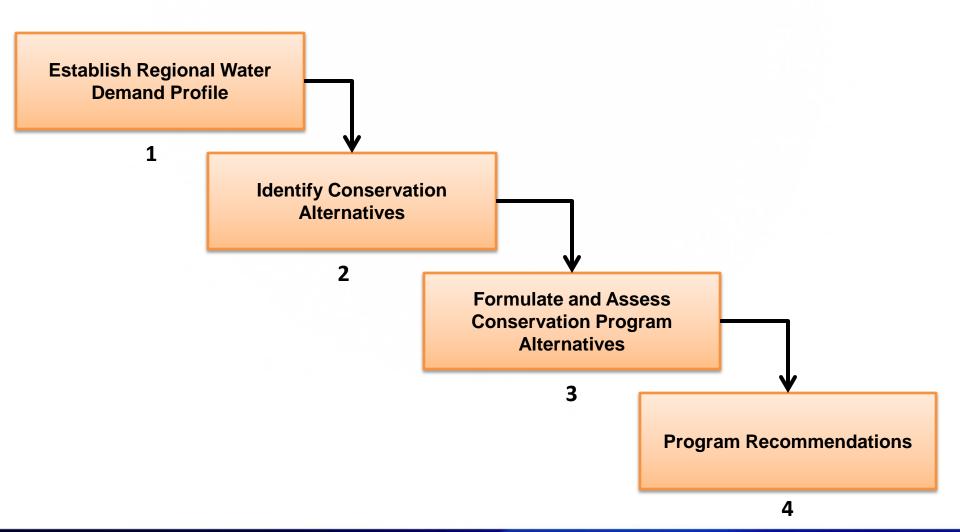
### Demand Management Plan Purpose

- Make better plans on how to integrate this work with decisions on supply development
- Identify and evaluate regional water use efficiency potential
  - Opportunities to defer need for capital investment / O&M costs
- Integrate demand management into supply planning process
  - Compare efficiency and supply projects using the same criteria, including cost



### Increased water use efficiency provides regional benefits

- Conserved water = economic benefits
  - 1 mgd saved = \$15 20M capital cost deferment
  - 1 year deferral of \$100M capital project saves agency
     \$5M in interest
- Avoided energy and chemical operating costs





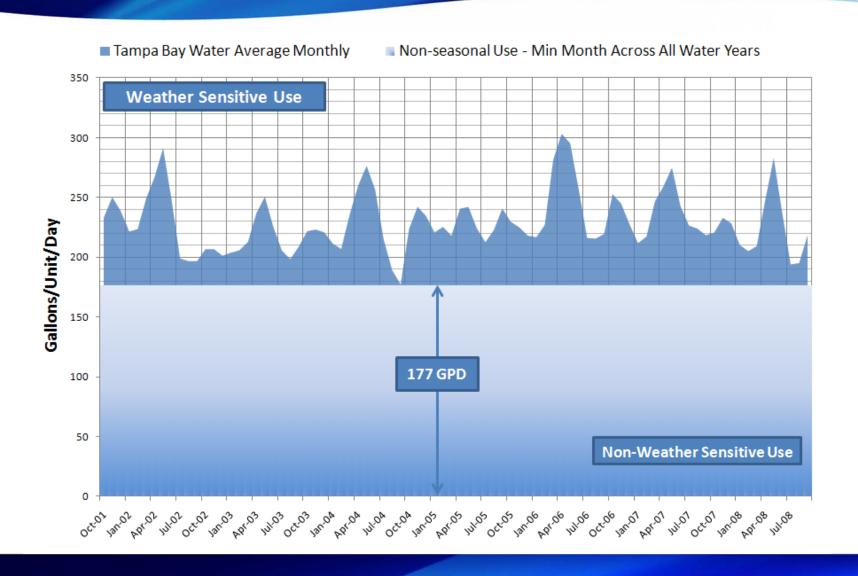

#### **Background information**

- U.S. Energy Policy Act effective (EPAct, 1994)
- Agency completed first Demand Management Plan (1997)
  - Dependability of EPAct savings unknown
- Market for water efficient products has evolved post-EPAct
- Cost of future supply options has increased
- 2008 Board approved Demand Management Plan update to be included in 2013 Long-term Water Supply Plan

### TAMPA BAY Key Project Components WATER



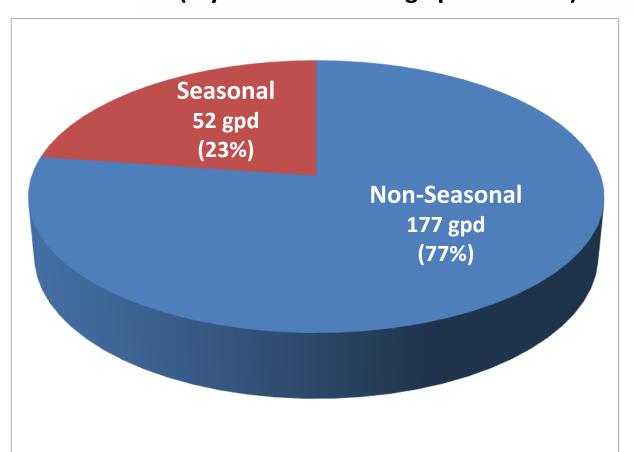



#### **Estimating Surplus / Deficit Irrigation**

#### **Objectives**

- Evaluate regional program savings to-date
- Further explore potential opportunities
  - Program selection
  - Water savings potential
  - Target customers
- Where does potential exist across user groups?
- Establish attainable goals for Tampa Bay region
  - Total reduction in outdoor water use?
  - Increase outdoor water use efficiency?




### Differentiating Indoor Use from Total Use (Single Family)





#### **Annual Average Single Family Use**

### Tampa Bay Water Wide = 229 gpd (7-year annual average per unit use)



#### Gallons/Capita/Day

Total: 88
Non-seasonal: 68
Seasonal: 20



#### **Defining Single Family Irrigation Use**

### Indoor water use average assumed: 177 gpd

- Market segmentation based on indoor use
  - Irrigators
  - Non-irrigators
- Customers using >177 gpd, assumed to irrigate



### **Estimating Theoretical Watering Requirements**

- Calculated ET rate used to evaluate surplus
- Assumed combined landscape (turf/shrubs)

$$LWR_H = RTM \times \left[ (ET_o \times K_L) - R_e \right] \times \frac{A}{C_u}$$

RTM = Run Time Multiplier Where 1 = 100 percent efficiency

ETo = Annual Eto

KI = Crop Coefficient (Turfgrass, Central/Southwest Florida)

Re = Effective Rainfall (Tampa Effective Rainfall)

A = Irrigated area

Cu = Cubic Feet to Gallons conversion factor = 1.6043

#### **Defining Surplus / Deficit Irrigation**

- 1. Identify assumed irrigators (customers using >177 gpd)
  - Excludes customers with reclaimed water
- 2. Estimate of theoretical requirements based on landscape area
- 3. Estimate irrigation use (>177 gpd)
  - Deficit irrigators
    - Irrigation estimate < theoretical requirement</li>
  - Surplus irrigators
    - Irrigation estimate > theoretical requirement

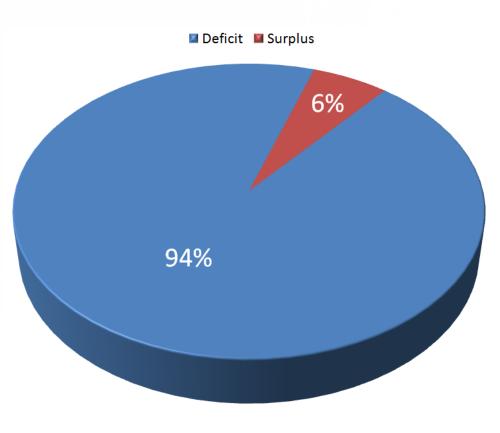


### Surplus / Deficit Irrigation Study Groups Analyzed

- 1. Regional Survey results provided important info
  - PPH / irrigation system / alternative sources
- 2. All customers in region
  - Assumptions regarding indoor / irrigation use
  - Utility billing data provides info about reclaimed water
  - Compared to survey results
- 3. Regional conservation programs
  - Analyzed pre/post, surplus/deficit water use
    - Irrigation evaluations
    - Florida Yards & Neighborhoods Program (landscape modifications)



### Distribution of Surplus / Deficit Irrigators




### Proportion of Surplus / Deficit Irrigators in Regional Survey

Small proportion of customers surplus irrigate!

|                | Deficit | Surplus |
|----------------|---------|---------|
| Customers      | 6%      | 94%     |
| Total Use      | 266     | 544     |
| Irrigation Use | 123     | 408     |
| Greenspace     | 8,265   | 6,240   |

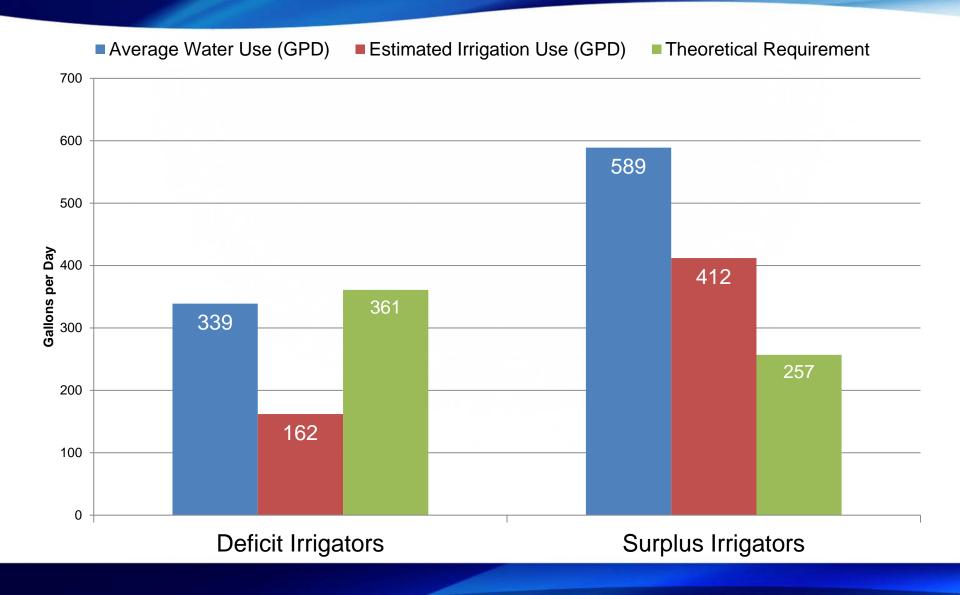
Surplus homes have smaller yards on average (33%)





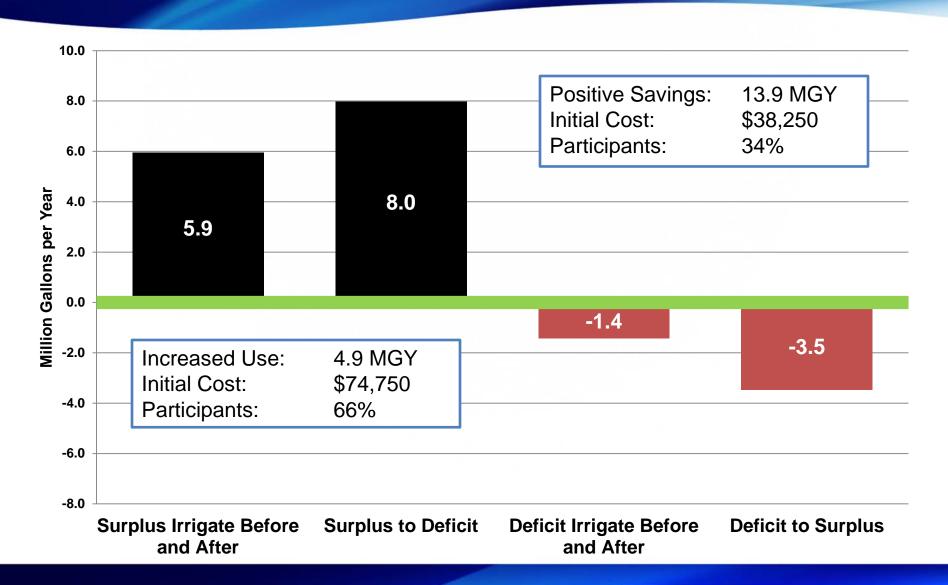
### **Comparison of Surplus Irrigators in Survey and All Customers Groups**

| Variable                           | Survey Customers w/ In-ground System | All Customers |
|------------------------------------|--------------------------------------|---------------|
| Count                              | 64                                   | 39,026        |
| % of Total                         | 6%                                   | 9%            |
| Green Space Est                    | 6,240                                | 6,026         |
| Average Water Use (GPD)            | 544                                  | 589           |
| Estimated Indoor Water Use*        | 136                                  | 177           |
| Estimated Irrigation Use (GPD)     | 408                                  | 412           |
| % Irr Use                          | 75%                                  | 70%           |
| Surplus (GPD)                      | 138                                  | 155           |
| % Surplus                          | 51%                                  | 61%           |
| Surplus ET Savings Potential (GPY) | 50,312                               | 56,756        |




### **Comparison of Deficit Irrigators in Survey and All Customers Groups**

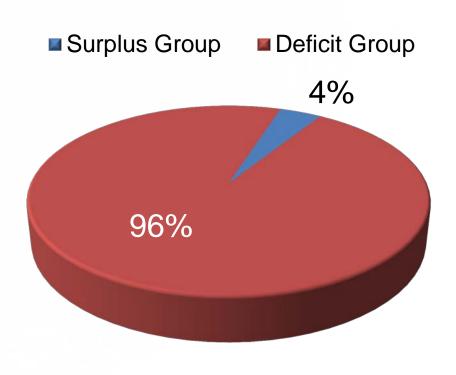
| Variable                       | Survey Customers w/ In-ground System | All Customers |
|--------------------------------|--------------------------------------|---------------|
| Count                          | 477                                  | 184,841       |
| % of Total                     | 44%                                  | 44%           |
| Green Space Est                | 8,265                                | 8,955         |
| Average Water Use (GPD)        | 262                                  | 286           |
| Estimated Indoor Water Use*    | 138                                  | 177           |
| Estimated Irrigation Use (GPD) | 123                                  | 109           |
| % Irr Use                      | 47%                                  | 38%           |
| Deficit (GPD)                  | -234                                 | -274          |
| % Deficit                      | -66%                                 | -71%          |




### Regional Total Average Water Use vs. Estimated Irrigation Use






### Irrigation Evaluation Program Water Savings

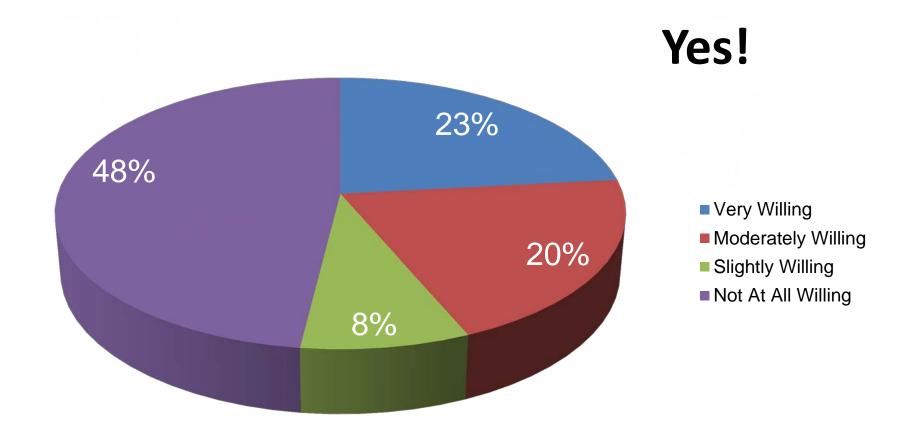




#### Florida Yards & Neighborhoods Program Evaluation

- Majority of participants early adopters
- Increases in efficiency still recognized
  - 13% pre-post reduction
  - ~9,000 GPY
- Theoretical water requirements may not be applicable




Significant water savings potential if non-adopters targeted correctly.



### **Implications**



### Are customers willing to modify landscape?





### Matching measures and savings options with the right customers

- Weather-based and Soil Moisture Sensors
  - Reduce surplus to 0%
    - most likely associated with SMS for SF sector in Florida
  - Some SMS users to deficit irrigate
    - user preference, not technology based
- Irrigation evaluations
  - % reductions for both surplus and neutral deficit
- Landscape modifications
  - Use % deficit pre and post FYN for potential
- Source substitution (if applicable)
  - All irrigation removed from potable use

#### **Conclusions**

- Formulation of irrigation efficiency programs must consider surplus/deficit irrigation factors
- Deficit irrigation practices can influence outdoor program savings potential
  - Program selection
  - Customer targets
- In Tampa Bay Water Region
  - Deficit irrigation seems to be the norm
  - Greatest potential seems to exist for reducing surplus irrigation water use down to theoretical needs
- Market segmentation needed to inform program development



#### **Questions**

