This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

What Savings, Where?

SCOTT WINTER LEAD CONSERVATION SPECIALIST OCTOBER 4, 2012

Objectives

- Describe purpose of study
- Profile water use
- Review demand modeling process
- Illustrate factors influencing water use
- Highlight potential demand management issues/ opportunities
- Discuss next steps

Colorado Springs Utilities

- The state's 2nd largest city
 More than 420,000 residents
 Employment of 230,000
- Only large city not on a major river
- Majority of water comes from Colorado River basin 200 miles away

Study Purpose

 Examine the spatial and temporal variation of water use in Colorado Springs

• What factors influence water use in Colorado Springs?

- What are the spatiotemporal patterns of use?
- Develop a predictive model of water use
- Explore, analyze and interpret model results
 - How does the influence of various factors vary spatially?
 Are there apparent neighborhood influences on water use?
- Develop water demand scenarios
- Identify high level demand management opportunities
 - How does the potential to conserve vary spatially?
 - Identify information gaps

Water Use Profile

- City sub-divided into 50 "water use zones"
 - Population and employment estimated based on traffic analysis zones
 - Boundaries correspond to major pressure zone

Water Use Profile

- Substantial commercial Military and military use
- Per person usage ratios are slowly shifting toward commercial

Residential 44%

Other 1%

Commercial 34%

Residential Indoor Use

- Primarily associated with fixture and appliance efficiency
- Highly variable from 43 to 99 gpcd
- Variability indicates other factors at play
- Moderately clustered
- Not clearly correlated with income or house age

Residential Outdoor Use

- Primarily associated with lot size which is a function of socioeconomics
- Neighborhood-level influences are also important
 O HOAs

Data Preparation

- Water use data are derived from a Colorado Springs Utilities water use database
- Customer-level monthly billing data
- Use is segregated into residential and commercial indoor and outdoor
- Majority of housing and socioeconomic data are added at the customer level
- Use, housing and socioeconomic data are aggregated monthly by demand zone
- Additional demand-zone level data are added to aggregated monthly data

- Employs a spatial weighting scheme whereby near observations are considered to have more influence on the dependent variable than those further away
- Allows for spatial variability of parameter coefficients, coefficient significance, and model performance
- Written as:

$$y_i = \beta_0 (u_i, v_i) + \sum_k \beta_k (u_i, v_i) x_{ik} + \varepsilon$$

Residential Outdoor Model Parameters

Ten independent variables chosen out of 49 tested

- Days greater than 85°F
- Average maximum temp × days greater than 55°F
- Days less than 40°F
- Effective precipitation × days with greater than .02"
- Prosperity Index
- Average water price from previous month
- House age
- 1 day per month watering restrictions
- 2 days per week watering restrictions
- 3 days per week watering restrictions

Residential Indoor Rebate Adoption

- Varies tremendously
- Adoption positively correlated with income and negatively correlated with house age

Influence of Indoor Rebate Adoption

- Greatest influence is generally in lower income and older areas
- This is nearly the inverse of adoption and represents opportunities for conservation

Residential Indoor Water Use Trends

- All areas are showing a downward trend
- Trends in some high use areas are minimal

Influence of Average Price on Outdoor Use

 Greatest influence in middle income areas with moderate rates of outdoor use

Housing Age

- Oldest homes are in the center of the city
- City is growing primarily toward north and east
- Future growth is likely to be almost exclusively infill and toward east

Influence of Housing Age on Outdoor Use

- For the majority of the city, outdoor use is higher in newer homes
- These areas present both opportunities and concerns
- Newer areas with lower use should be examined further to understand why

Net Influence of Housing Age on Total Use

- Net use is higher among newer homes in only a small part of the city
- In the majority of the city, the net trend is flat

Influence of Economic Conditions on Use

Influence of economic conditions on outdoor water use is greatest in middle and lower income areas in the southeast portion of the city

Important GWR Parameter Coefficients

- Each rebate for indoor water efficiency fixtures or appliances saves more than 7,200 gallons per year.
- Each year of age added to a house, results in an average reduction of 0.20 gallons per person per day outdoors.
- Each year of age added to a house, results in an average increase of 0.29 gallons per person per day indoors.
- Every 10% increase in water price results in a decrease in outdoor use of 3.4%.
- 2-day per week watering restrictions result in an average savings of 31.02 gallons per person per day.

Irrigated Area per Single Family Customer

- Estimated using aerial image taken in 2009
- This is a measure of living ground cover, including turf and trees
- Many newer areas have more irrigated area than older areas

Residential Irrigation Savings Potential

- Based on an estimate of average use per square foot per month compared to measured ET
- Varies considerably
- Significant potential for savings only exists in a small percentage of the city

Neighborhood Influences

- Neighborhood influences are essentially "peer pressure".
- This is the influence of the proximity to neighbors with particular habits.
- This influence varies spatially.

Neighborhood Influence on Indoor Use

- The influence of "neighborhood" on indoor use is substantial in many areas of the city
- More research is needed to understand

Neighborhood Influence on Outdoor Use

- The influence of "neighborhood" on outdoor use is substantial in many areas of the city
- The variation of influence indicates disparate underlying causes

Neighborhood Influences on Total Use

- The variation of neighborhood influence on total use is substantial
- More research is needed

Conclusions and Next Steps

- Water use is a function of complex relationships between many variables
- Conservation potential exists, but a much more strategic approach is required to achieve it in an efficient and cost-effective manner
- Neighborhood influences are apparent in much of the city. Some are positive and others are negative
- Demand model is being integrated with supplyside models
- Results of study will inform conservation plan update

Thank You!

Questions?

Scott Winter <u>swinter@csu.org</u> 719.668.4590