# This presentation premiered at WaterSmart Innovations

watersmartinnovations.com



#### LIKE WATER FROM AIR! SNWA AIR CONDITIONER CONDENSATE STUDY

Michael Drinkwine

Kent Sovocool

Mitchell Morgan

## BACKGROUND

- Condensate is a by-product that is produced when our homes are being cooled by our air conditioners
- Air blows across air conditioner coils, water condenses and accumulates.
- In a single family residential home this water is typically drained away onto the property without being of much use.
- Some homebuilders have started to drain this water into the sanitary sewer system, potentially creating a new water resource for the Las Vegas Valley
- In 2007 SNWA began investigating the potential for condensate generation through small single site experimentation.
- In 2010, the decision was made to expand the experiment to include more sites.

# **CONDENSATE ROUTED TO SEWER**



## **CONDENSATE SOURCE**



## **CONDENSATE SOURCE**

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

# STUDY RESIGN

- Approximately 20 single family residential properties were chosen to participate in a year-long study to estimate the amount of condensate water generated from AC heat exchange operation.
- These participants were selected from interested SNWA employees within the Environmental Resources Department, SNWA Conservation Workgroup members and acquaintances of employees.

# SITE SELECTION

- Potential properties were then screened to determine suitability and ease of monitoring.
  - Include only homes with AC compressor units detached from the home (no roof mounted units) for ease of access to the condensate drain.
- > 18 sites were used in the final analysis

- Monitoring equipment consisted of tipping bucket rain gauges with on board dataloggers to measure the amount of water flowing from the drain
- Small dataloggers that recorded temperature and relative humidity were also obtained to allow correlation between weather and water generation.

# **BAIN GAUGE CALLIBRATION**

The rain gauge was calibrated to measure the difference between recorded intake and actual intake at different water rates

![](_page_9_Picture_2.jpeg)

### **BAIN GAUGE CALIBRATION**

![](_page_10_Figure_1.jpeg)

- Layout and location of the condensate drain location required two methods to route water from the drain into the rain gauge.
  - 1. Flexible polyethylene tubing adapted to run from the outlet securely into the rain gauge
  - 2. Run small lengths of PVC tubing into the gauge, which often needed to be placed lower than ground level to ensure adequate angle for water entry before evaporation

![](_page_12_Picture_1.jpeg)

- Testing was conducted to determine the difference in time that different angle had on flow rates.
- The results widely varied, but angles greater than 30 degrees were found to be optimal.
- All gauges were covered by composite utility box enclosures to protect them from the elements.

- The second installation method was preferred over concern from the amount of time the condensate water would sit in the flexible piping before entering the gauge.
- Testing showed little evaporative loss, but the small amounts of water being generated overall led to caution winning out over ease of installation.
- Participants completed a brief demographic survey & signed a research agreement.
- Equipment types were catalogued as well as thermostat settings recorded.

### RESULTS

- Data was collected for approximately 1 year, starting in late July of 2010 and ending in October of 2011.
- There was wide variation in the total annual amount of condensate generated.

![](_page_16_Picture_0.jpeg)

#### Total Gallons Produced in 2010 (sorted by home age)

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

#### Total Gallons Produced in 2011

(sorted by home age)

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

#### Average Gallons per Day in 2010

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

#### Average Gallons per Day in 2011

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

|                       | Tatal Callera |                 |
|-----------------------|---------------|-----------------|
|                       | Total Gallons | Gallons per Day |
| Minimum               | 5.45          | 0.05            |
| Average               | 81.94         | 0.55            |
| Maximum               | 213.20        | 1.36            |
| Standard<br>Deviation | 76.57         | .47             |

# **RESULTS ALL RATA**

|           | Total Gallons | Gallons per Day |
|-----------|---------------|-----------------|
| Minimum   | 6.06          | 0.03            |
| Average   | 114.84        | 0.49            |
| Maximum   | 281.40        | 1.08            |
| Standard  | 201.49        | 1.00            |
| Deviation | 99.98         | .38             |

# **REGRESSION MODEL**

#### > Why model?

We developed & ran many multivariate models using both hourly and averaged daily values with various other inputs.

#### > Our best model used these variables:

| Variable   | Definition                                         |
|------------|----------------------------------------------------|
| OrigInches | Original un-shifted condensate measurement         |
| AvgPCT_RH  | Daily avaraged percent relative humidity           |
| DewPtCinF  | Averaged dew point in degrees farenheit            |
| WetBulb    | Averaged wet bulb temperature in degrees farenheit |
| CONST_YR   | Construction year of the house                     |
| N_BED      | Number of bedrooms                                 |
| N_AC       | Number of air conditioning units                   |
| N_PEEPS    | Number of permanent residents                      |
| SHOWER_MIN | Average of total minutes of shower time per day    |
| COOL_SHARE | Participates in NV Energy's Cool Share program     |
| LOW_TEMP   | Lowest temperature measured at vent                |

# **REGRESSION MODEL**

#### **Final Model**

Regression Summary for Dependent Variable: OffsetInches (3HrShiftAvg.sta)

R= .89574154 R<sup>2</sup>= .80235290 Adjusted R<sup>2</sup>= .80033235

| F(11,1076)=397.10 | p<0.0000 Std.Error of estimate: .10933 |
|-------------------|----------------------------------------|
|-------------------|----------------------------------------|

|            | Beta      | Std.Err. | В        | Std.Err. | t(1076)  | p-level  |
|------------|-----------|----------|----------|----------|----------|----------|
| N=1088     |           | of Beta  |          | of B     |          |          |
| Intercept  |           |          | 24.48042 | 2.035986 | 12.0239  | 0.000000 |
| OrigInches | 0.685528  | 0.018309 | 0.63164  | 0.016870 | 37.4420  | 0.000000 |
| AvgPCT_RH  | -0.090326 | 0.026625 | -0.16926 | 0.049891 | -3.3926  | 0.000718 |
| DewPtCinF  | 0.101864  | 0.041159 | 0.00141  | 0.000568 | 2.4749   | 0.013481 |
| WetBulb    | 0.235363  | 0.030361 | 0.01004  | 0.001295 | 7.7521   | 0.000000 |
| CONST_YR   | -0.260855 | 0.021476 | -0.01253 | 0.001032 | -12.1461 | 0.000000 |
| N_BED      | 0.238209  | 0.030511 | 0.11684  | 0.014966 | 7.8074   | 0.000000 |
| N_AC       | 0.377711  | 0.044242 | 0.19564  | 0.022915 | 8.5375   | 0.000000 |
| N_PEEPS    | 0.157722  | 0.021910 | 0.04242  | 0.005893 | 7.1987   | 0.000000 |
| SHOWER_MIN | 0.341588  | 0.054480 | 0.00405  | 0.000645 | 6.2699   | 0.000000 |
| COOL_SHARE | 0.090386  | 0.029097 | 0.06562  | 0.021124 | 3.1063   | 0.001944 |
| LOW_TEMP   | -0.460551 | 0.064506 | -0.01430 | 0.002003 | -7.1397  | 0.000000 |

### **RELATIVELY WELL FITTING SITE**

![](_page_24_Figure_1.jpeg)

# WATER QUALITY

- > Why?
- Samples were taken at eight of the sites in August 2010 and were sent to the lab for analysis
- > Additional samples were obtained at two sites in May 2011 and were also sent for analysis
- It was a struggle to get sufficient water in a timespan conductive to analyses.

# WATER QUALITY

#### > General

| ANALYTE                    | Min     | Average | Max     | StdDev   | Ν  |
|----------------------------|---------|---------|---------|----------|----|
| Alkalinity, HCO3           | 0.000   | 23.363  | 62.900  | 20.85967 | 10 |
| Alkalinity, Total          | 8.530   | 33.376  | 62.900  | 16.21143 | 10 |
| Conductivity               | 137.000 | 256.000 | 426.000 | 94.47869 | 10 |
| D.F.E.                     | -69.000 | -24.000 | 43.000  | 59.15235 | 3  |
| Hardness, Total            | 0.350   | 4.303   | 9.600   | 3.68068  | 10 |
| Hardness, Non-CaCO3        | -27.000 | -12.333 | 11.000  | 20.42874 | 3  |
| o-Phosphate as P           | 0.001   | 0.002   | 0.003   | 0.00125  | 10 |
| рН                         | 4.360   | 5.025   | 6.000   | 0.49998  | 10 |
| Saturation Index           | -3.960  | -5.463  | -7.490  | 1.35063  | 7  |
| TDS                        | 28.800  | 44.340  | 84.400  | 20.70000 | 10 |
| Temperature (deg. Celsius) | 21.000  | 21.471  | 22.100  | 0.38607  | 7  |

\* relevant units in mg/L

## WATER QUALITY

#### Trace Metals (mg/L)

| ANALYTE   | Min   | Average | Max   | StdDev | Ν  |
|-----------|-------|---------|-------|--------|----|
| Aluminum  | 0.970 | 6.677   | 8.300 | 5.985  | 10 |
| Copper    | 0.083 | 1.328   | 4.500 | 1.416  | 10 |
| Manganese | 0.089 | 0.089   | 0.089 | 0.089  | 10 |
| Zinc      | 0.068 | 2.069   | 9.100 | 2.865  | 10 |

# WATER QUALITY - BIOLOGICALS

- All 7 sites tested for Daphnia toxicity came back positive
- > The same 7 sites tested negative for Legionella
- All 7 sites came in under 0.5 ppb for the Algal Toxin Value test
- All 5 sites tested for Stachybotrys Chartara (aka. "Toxic" or "Black Mold") came back negative.
- > 2 sites tested positive for Scytalidium spores
- > 3 sites tested positive for Histoplasma spores

- Modest volumes (avg. ½ gallon per day) of condensate can be generated from home air-conditioners during the conditioning season.
- The volumes are highly variable at different sites and highly dependent on weather and other factors. Avg 81-115 gallons per year for an average site but can be next to nothing to over 280 gpy.

- It takes a lot of homes to make serious discussion of supplementing return-flow credits worthwhile. If 115 gals/residence then each acre-foot would require 2834 homes that are plumbed to sewer.
- Assuming we study other property types with large A/C units in the future we may quantify more conservation potential.
- Remember though it could be considered "free" paper water to SNWA.

- Best model suggests that weather, home age, number of A/C units, people and bedrooms, amount of showering time, participation in Cool Share program and how much people cool their homes are associated variables in condensate generation.
- There are more probably more factors we don't know than know (ex. detailed A/C settings and configuration of piping among others).

- Generation of highly non-mineralized condensate results in aggressive water.
- Carbonic acid (H<sub>2</sub>CO<sub>3</sub>) is formed by reaction of highly pure water with CO<sub>2</sub> in atmosphere.
- This causes metals to be stripped from contacted A/C components.
- Water chemistry supports this, though phenomenon already documented in literature.

- > Appear to catch other contaminants like some dust-borne molds.
- > No "toxic mold" found in samples.
- While the two molds found can cause health issues in dust, occurrence in water not a recognized threat.

- In terms of builders routing to washing machine box, probably a safe and reasonable alternative to routing outside.
- Metals in relatively trace amounts and acidity will be swamped out by relatively basic wash waste water.
- Risk of mold spores much greater from simple blowing in of air from doors, windows, and leaks than dry opening of condensate drain pipe.

![](_page_35_Picture_0.jpeg)

#### It does work nicely for supplemental irrigation of a small collection of plants.

![](_page_35_Picture_2.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Figure_1.jpeg)