This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Simplified Landscape Irrigation Demand Estimation – *A New Paradigm*

Dennis Pittenger

Area Environmental Horticulturist Los Angeles County/UC Riverside

Presentation © 2012 Dennis Pittenger

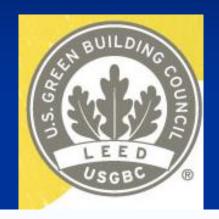
University of California Cooperative Extension

University of California Agriculture and Natural Resources

Goals of the presentation

Introduce simplified irrigation demand estimation

 Learn latest insights on estimating meaningful landscape coefficients or plant factors


Demand for Climate-based Landscape Water Need Estimates

- Water budgets
- State & local conservation ordinances
- "Green" development standards & codes
- Smart irrigation controllers
- Sustainable landscapes
- U.S. EPA 'Water Sense'
- Save water
- Save money

Landscape Water Conservation Programs & Approaches

THE SUSTAINABLE SITES INITIATIVE

ETO = Reference Evapotranspiration An estimate of environmental water demand over a planted area

- Climate-based reference
- Inches/day
- ETo = estimated water use of well-watered cool-season turf
- Calculated from weather data
 - Sunlight, temperature, RH, wind
 - ASCE Penman-Monteith equation
- Based on field research with agricultural crops

Climate-Based Water Budgets Need reliable plant factor estimates

Water Budget or Water Need

ETo × PF, K_L, Kc, or ETAF × LA × 0.62

gallons = inches × % × sq. ft. × conversion

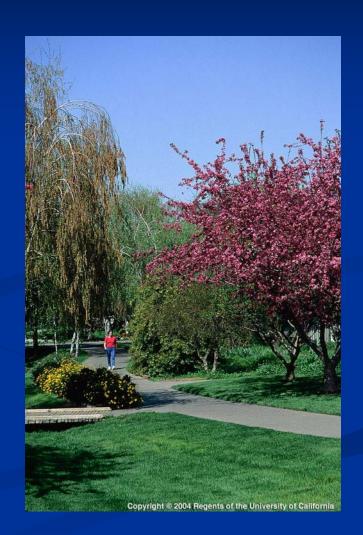
- ETo = reference evapotranspiration; climate impact
- PF, K_L, Kc = plant material adjustment factor
- LA = sq. ft. landscape area
- 0.62 = converts depth to volume [gal. ÷ (in. x sq. ft.)]

Need Simpler Paradigm for Estimating Landscape Water Need

- Most approaches complex with false precision
- No Kc's & few PF's for non-turf landscape plants
- ETo has limited application in landscapes
- Range of %ETo (PFs) appropriate for landscape plants

Simplified Landscape Irrigation Demand Estimation

SLIDE


....a new paradigm

for selecting Plant Factors.....

SLIDE Paradigm

Principles:

- Plant factors accurately estimated by broad plant type categories based on science and research
- Landscape water need estimated by weighting sq. ft. of each plant type

SLIDE Features

- Simple to understand & use
 - Replaces need for huge data base
 - Reduces number of factors or variables
- Accommodates new plants
- Scientifically & conceptually sound
 - Assimilation and application of ≈20 yrs. of data
 - Scientifically traceable
- Provides reliable numbers for calculations
- Wide geographic & climatic application

Current Development Status of SLIDE

- Presenting to key stakeholders and decision makers
- Electronic discussion system among researchers
- Preparing technical manuscript to establish scientific merit

SLIDE Leaders

- Roger Kjelgren Utah State University
- Richard Beeson University of Florida
- David Shaw University of California
- Dennis Pittenger University of California

National Standard Being Developed

SLIDE concepts integrated

 Am. Society of Agricultural & Biological Engineers (ASABE)

x623: Standardized Procedure for Determining Landscape Plant Water Requirements

WUCOLS

Water Use Classification of Landscape Species

PROS

- Source of numbers
- Categories by climate zone and water use
- Includes numerous spp.
- Hardcopy and on-line

CONS

- Not science based
- Data not reliable
- False sense of precision
- Complex and perplexing to use
 - Not readily revised

Typical ETo Adjustment Calculation

Landscape Coefficient

K_{PLANTS} from WUCOLS

K_{VEG. DENSITY} and K_{MICROCLIMATE} assigned by user

SLIDE Rules

Landscape Coefficient

SLIDE Rules

- Landscape plant water USE ≠ NEED
 - Plants often use more than they need
 - Meet minimum expectations in a range of % ETo
 - ETo concept has limited accuracy in landscapes
 - Landscape plants tolerate managed drought
- Most non-turf plants need near 50% ETo
- Plant factors accurately estimated by categorizing plants

Estimating Plant Water Needs Through Science

- Define a reference for plant water use that is a function of climate (ETo)
- Compare water needed to maintain given plant with reference amount
- Express plant water need as % of reference
 - Plant Factor (PF) acceptable appearance, function
 - Crop Coefficient (Kc) optimum growth or yield

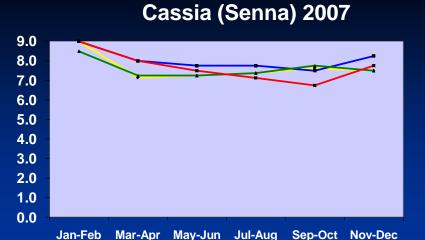
Estimating Plant Water Needs Through Science

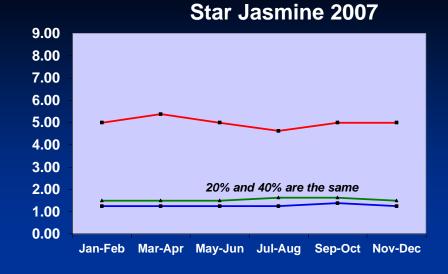
Estimating Landscape Water Needs Using ETo

Assumptions:

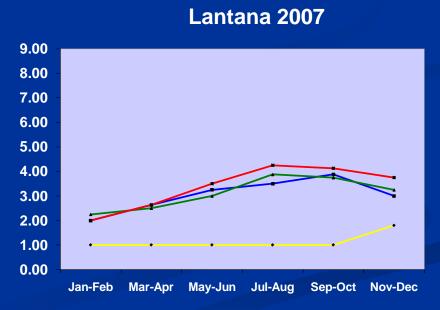
- Landscapes need/use water like ag. crops
- Plant water needs change in lockstep with changes in ETo
- Plant canopy is uniform
- Same or similar plants across landscape
- Ability to irrigate the landscape plants uniformly

ETo Approach OK With Turf


Turfgrass Irrigation Needs



Cool-season Kc: 80% ETo annual avg. (60% ETo minimum)


Warm-season Kc:60% ETo annual avg.(40% ETo minimum)

Groundcovers, Trees, Shrubs

- ETo × PF model cannot precisely estimate non-turf water need
 - Narrow range of % ETo per species
- Typically acceptable 30-60% ETo
- Use more water than they need
- Traditional landscape plants perform acceptably with range of low water
- Less water often limits growth, not quality
- Discrepancies with WUCOLS

WUCOLS Analysis

WUCOLS ZONE	1	2	3	4	5	6	AVG.
# of species appropriate to zone	1602	1088	1969	1185	529	820	1199
% High Water Needs 0.7 – 0.9 ETo	5	6	5	9	7	8	7 (84)
% Medium Water Needs 0.4 - 0.6 ETo	51	52	57	57	66	68	59 (707)
% Low Water Needs 0.1 – 0.3 ETo	38	36	31	32	25	24	
% Very Low Water Needs < 0.1 ETo	7	5	7	3	2	0.5	4 (48)
Control Total	101	99	100	101	100	100.5	

SLIDE Rules (DRAFT)

- Categories of Water Need
 - Turfgrass = 40-60% ETo (w-s) / 60-80% ETo (c-s)
 - Annual-Perennial Flowers/Foliage = 70-80% ETo
 - Tree/Shrub/Groundcover/Vine = 50-60% ETo
 - Low Expectations/Very Drought Tol. = 30-40% ETo
 - 20% Desert Natives, Research Proven Drought Tolerance??

SLIDE Rules

- Leaf area influences landscape water demand
- Canopy size & Projected Canopy Area Issues
 - Crown projection area × ETo × PF
 - Guidelines for new or sparsely planted landscapes

SLIDE Paradigm

Principles:

- Based on science plant factors accurately estimated by broad plant type categories
- Landscape water need estimated by weighting sq. ft. of each plant type

Dennis Pittenger

Area Environmental Horticulturist

dennis.pittenger@ucr.edu 951.827.3320

Center for Landscape and Urban Horticulture www.ucanr.org/landscapewater

University of California Cooperative Extension

University of California Agriculture and Natural Resources