This presentation premiered at WaterSmart Innovations

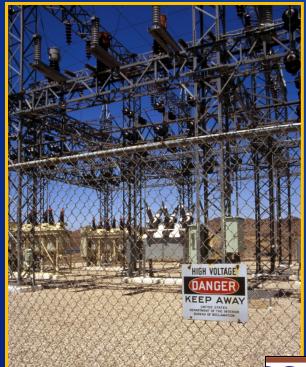
watersmartinnovations.com

RECLANATION Managing Water in the West

Evapotranspiration Analysis of Saltcedar and Other Vegetation in the Mojave River Floodplain, 2007 and 2010

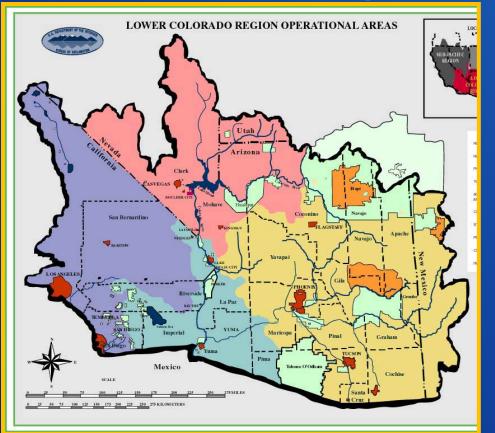
Mojave Water Agency Water Supply Management Study Phase 1

October 5, 2011


U.S. Department of the Interior Bureau of Reclamation

Bureau of Reclamation

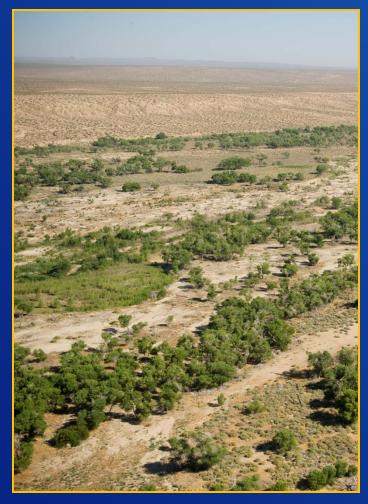
The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.



RECLAMATION

Moia

Lower Colorado Region



Mojave Water Agency

Southern California Area Office RECLAMATION

Study Background

Reclamation's Planning Program

- Mojave Water Agency Water Supply Management Study
 - Analyze a variety of water uses within the MWA service area and develop recommendations for providing additional water supplies or reducing water use

RECLAMATION

- Three phases
- Evapotranspiration Water Use Analysis of Saltcedar and Other Vegetation in the Mojave River Floodplain, 2007 and 2010

Study Team

Utah State University

- Dr. Christopher Neale, Professor
- Dr. Robert Pack, Associate Professor
- Saleh Taghvaeian, Hatim Geli, and Saravanan Sivarajan, Ph.D. students
- Ashish Masih, Post-graduate Researcher

Bureau of Reclamation

- Amy Witherall, Water Resources Planner
- Jeff Milliken, Remote Sensing Scientist
- Mike Baker, Remote Sensing Scientist
- Ron Simms, Geographic Information Group Manager
- Scott O'Meara, Botanist

Study Overview

Saltcedar (Tamarix)

Analyses included:

- 2007 and 2010 classification of native and non-native vegetation
- Vegetation evapotranspiration modeling
- Lidar elevation map development
- Groundwater mapping
- Water evapotranspiration cost calculations
- Results are presented as a whole and also by Mojave Water Agency Alto, Alto Transition, Centro, and Baja subarea boundaries.

RECLAMATION

Definitions

Remote Sensing –

Uses sensors to capture the electromagnetic radiation coming from the surface at specific wavelengths.

 Lidar – Laser system that transmits pulses of light at high frequency, receiving the reflected returns from different surfaces and mapping the position and altitude of the return.

Evapotranspiration (ET) – the amount of water that transpires through a plant's leaves plus the amount that evaporates from the soil in which the plant is growing.

Definitions continued

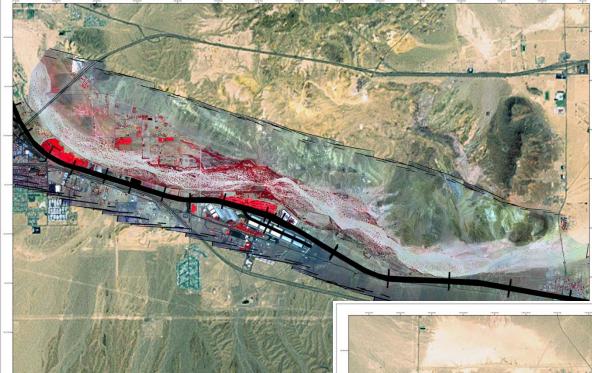
- Multispectral A remote sensing system that measures reflected light from the surface in specific bandwidths
- Canopy acres Areas covered by vegetative canopies
- Crop coefficient The ratio between actual ET of a crop and reference ET

RECLAMATION

Remote Sensing Services Laboratory

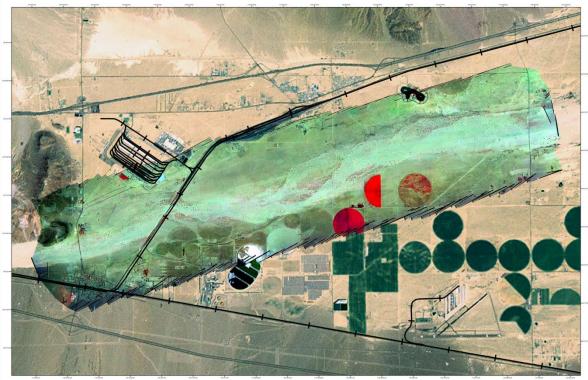
USU Cessna TP206 Remote Sensing Aircraft

Detail of Multispectral Cameras

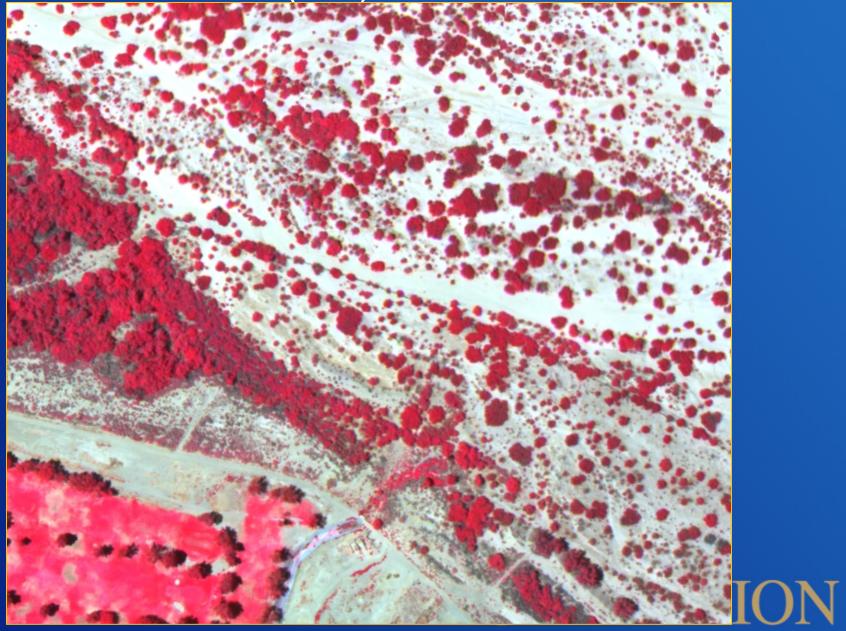


Lidar/Multispectral Flight

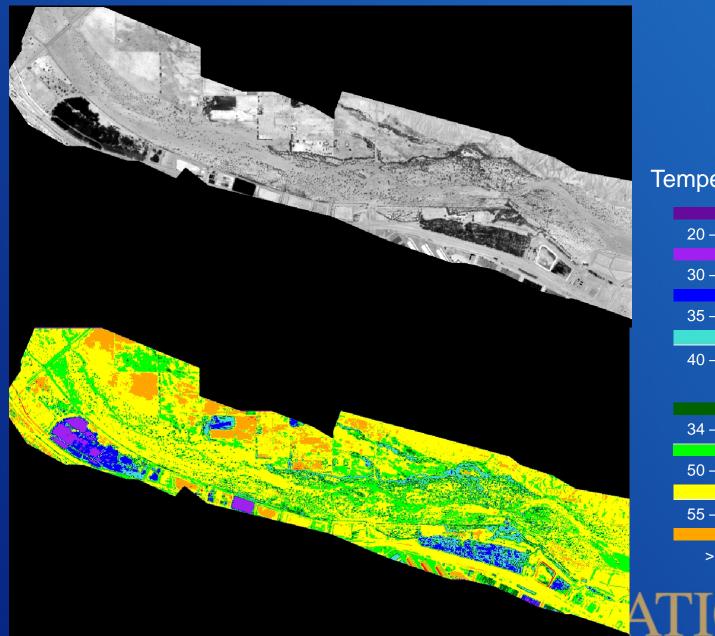
Imagery Acquired on June 29 and June 30, 2010 under clear sky conditions



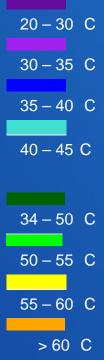
Multispectral Ortho Imagery

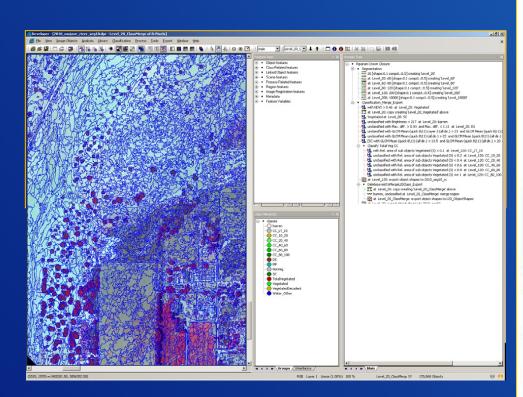

Block 1 and 2

Ortho-rectification using direct georeferencing with lidar point cloud data

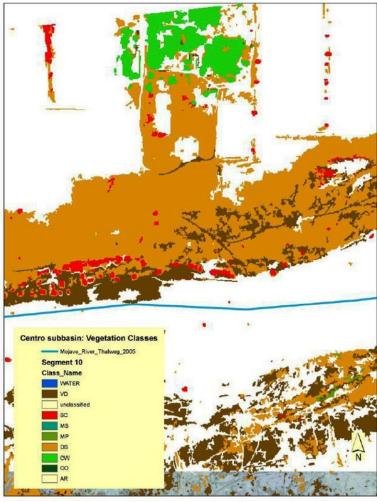


Multispectral Image Detail


Pixel resolution: 0.35 meter (1 foot)


Thermal Infrared Imagery

Temperature


Classification Methodology

eCognition Image Processing Software

Species/community-level polygons in blue over color infrared imagery base layer

RECLAMATION

Figure 22. Vegetation classification in raster format.

Classification Results

Table 1. Saltcedar canopy acres, 2007-2010

	Saltcedar Canopy acres					
Subarea	2007	2010	Δ	%Δ		
Alto	84.3	2.5	-81.9	-97.1%		
Alto Transition	201.0	77.9	-123.1	-61.3%		
Centro	732.9	634.1	-98.8	-13.5%		
Baja	383.1	358.7	-24.4	-6.4%		
MOJAVE BASIN TOTAL ACRES	1,401	1,073	-328	-23.4%		

 Δ =change

- Net saltcedar reduction of 328 canopy acres over the entire basin
- Saltcedar ET was reduced by 797 acrefeet over three years.

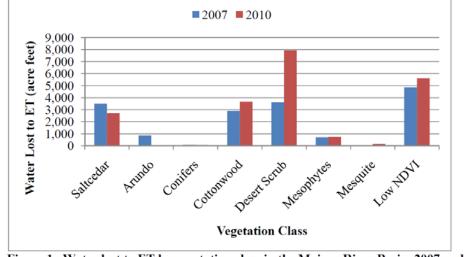
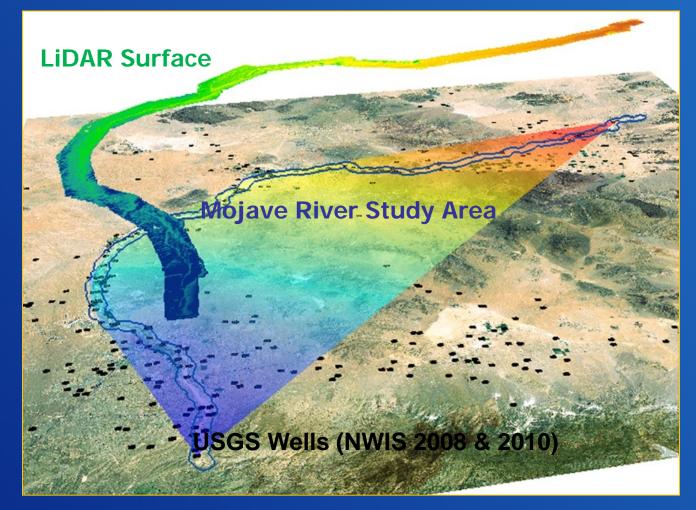


Figure 1. Water lost to ET by vegetation class in the Mojave River Basin, 2007 and 2010.

LEGEND Saltcedar within the Study Area of Interest: Saltcedar: Present in 2007 and 2010 Saltcedar: Present in 2007; Not present in 2010

nt & developmen

Saltcedar in the Mojave River 2007 - 2010



RECLAMATION Managing Water in the West Multispectral Imagery flown by Utah State University, June, 2010 Vegetation Classifications by Mike Baker & Jeff Milliken, Reclamation Change detection map by Ron Simms, Reclamation 2011.08.09

Groundwater Methodology

USGS depth-togroundwater subtracted from lidar to derive groundwater elevations within the **Mojave River** study area for 2008 and 2010

Classified Lidar Point Clouds

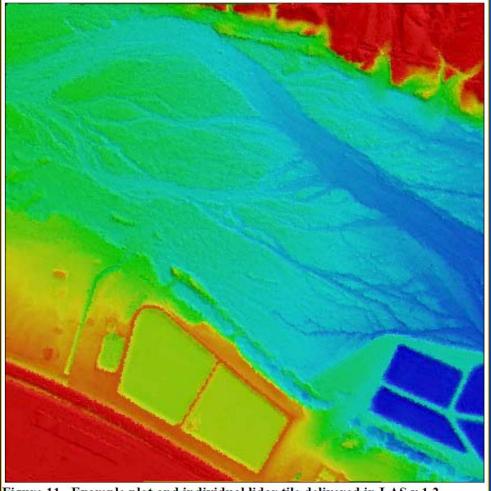
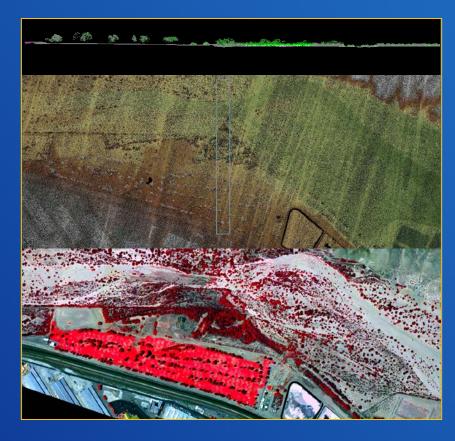



Figure 11. Example plot and individual lidar tile delivered in LAS v.1.2 format (blue colors are lower elevations while red colors are higher elevations). See lower right corner of images in Figure 10 for reference.

Energy Balance Approaches Used to Estimate Evapotranspiration

- The Two-source model
- SEBAL: Surface Energy Balance for Land
- Crop coefficient model used to extrapolate over the growing season

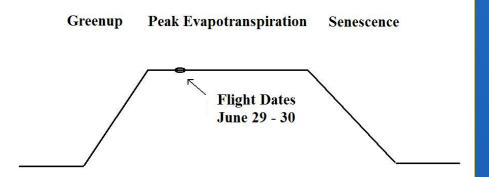
Table 5. Comparison of seasonal saltcedar ET results (in millimeters of water) for the SEBAL and Two-Source models, Block 1, using modeled canopy height

	201	.0	2007	
	SEBAL	TSM	SEBAL	TSM
Total ET (mm)				
March to May	107	102	112	107
May to September	<mark>5</mark> 33	5 03	509	480
September to November	230	216	226	212
Total ET (mm)	870	820	847	799
Reference ET (grass)	1589	1589	1561	1561

 Table 6. Comparison of seasonal saltcedar ET results for the SEBAL and

 Two-Source models, Block 1, using canopy height derived from lidar

RECLAMA


	201	0	2007	
	SEBAL	TSM	SEBAL	TSM
Total ET (mm)				
March to May	104	104	109	109
May to September	514	515	491	<mark>49</mark> 2
September to November	221	222	217	217
Total ET (mm)	838	840	816	<mark>818</mark>
Reference ET (grass)	1589	1589	1561	1561

Seasonal ET Estimation using ET fractions (crop coefficients)

 $Kc = ET_a / ET_0$

ET_a = Actual ET from Energy Balance Model ET₀ = Reference ET from CIMMIS Weather Station

RECLAMA

Phenology Dates	Code	Greenup Begins	Peak ET	Senescence Begins	Senescence Ends
Salt Cedar (Tamarisk)	SC	3/1	5/1	9/1	11/1
Mesquite	MS	4/1	5/15	8/1	9/15
Cottonwood	CW	4/1	5/15	9/15	11/1
Desert Scrub	DS	3/1	4/15	7/1	8/1
Decadent Vegetation	VD	4/1	5/15	8/1	9/15
Mesophytes	MP	4/1	5/15	7/1	8/1
Conifer	CO	3/1	5/15	10/1	11/15
Arundo	AR	4/1	6/1	10/1	11/1

Table 9. ET fraction of different vegetation types for the 4 groundwater subareas.

	ALTO							
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.49	0.34	0.71	0.36	0.33	0.56	0.36	0.4
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
			A	LTO TR	ANSITIO	N		
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.5	0.27	0.63	0.23	0.33	0.49	0.35	0.41
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
				CEN	TRO			
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Peak Kc	0.48	0.23	0.62	0.42	0.25	0.39	0.32	0.66
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	BAJA							
	SC	DS	CW	MS	VD	MP	CO	AR
Initial Greenup Kc	0.15	0.15	0.15	0.15	0.15	0.15	0	0
Peak Kc	0.47	0.25	0.56	0.27	0.24	0.43	0	0
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15	0	0

RECLAMATION

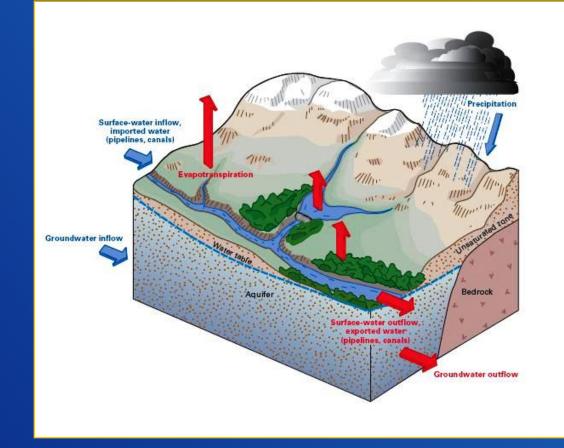
Table 19. Evapotranspiration and estimated seasonal water use by <u>saltcedar</u> in the Alto subarea during 2007 and 2010 seasons.

Year	2007	2010	
Initial Greenup K.c	0.15	0.15	
Peak Kc	0.48	0.48	
Final Senescence Kc	0.15	0.15	
Total Area (acres)	85	2.5	
ET Greenup Period (mm)	101	96	
ET Peak Period (mm)	444	465	
ET Senescence Period (mm)	194	194	
Total Seasonal ET (mm)	739	755	
Volume (m3)	253,639	7,546	
Volume (gallons)	67,004,350	1,993,490	
acre-feet	210	6	

Table 21. Evapotranspiration of saltcedar by canopy density or closure class for 2007 and 2010 in the Alto subarea.

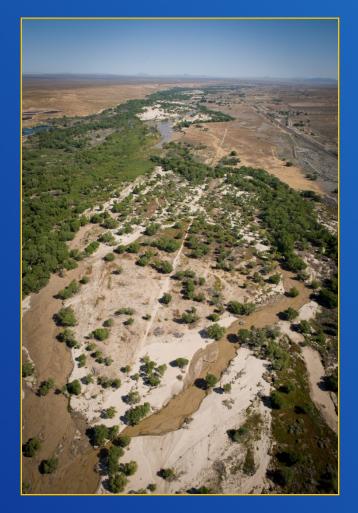
	LT_10	10_20	20_40	40_60	60_80	80_100				
Initial Greenup K.c	0.15	0.15	0.15	0.15	0.15	0.15				
Peak K.c	0.47	0.51	0.48	0.48	0.61	0.48				
Final Senescence Kc	0.15	0.15	0.15	0.15	0.15	0.15				
2007	LT_10	10_20	20_40	40_60	60_80	80_100				
Total Area (acres)	9	4	3	5	6	58				
ET Greenup (mm)	100	106	101	101	123	101				
ET Peak Period (mm)	439	475	447	447	572	447				
ET Senescence (mm)	192	209	196	196	256	196				
Total Seasonal ET (mm)	731	790	744	744	952	744				
acre-feet	22	10	7	12	18	141				
2010	LT_10	10_20	20_40	40_60	60_80	80_100				
Total Area (acres)	6	5	10	12	16	30				
ET Greenup (mm)	95	101	96	96	118	96				
ET Peak Period (mm)	460	497	468	468	599	468				
ET Senescence (mm)	192	209	196	196	256	196				
Total Seasonal ET (mm)	747	807	760	760	973	760				
acre-feet	1	2	2	0.1	0.2	0.3				
1 T 10 J them 100/										

RECLAMATION

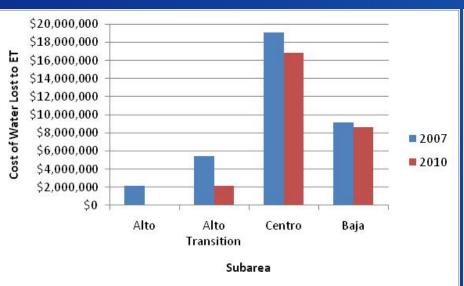

LT_10=Less than 10% canopy closure, 10_20=10-20% canopy closure, etc.

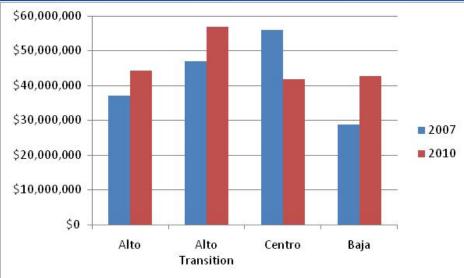
Water Salvage

Inflows


 Precipitation •Ground water Surface water **Outflows** Evaporation -Open water -Bare soil Transpiration •Ground water Surface water

Water Cost Methodology


- Theoretical costs based on water lost to ET
- 2011 acquisition costs of \$10,221 per acre-foot used for both 2007 and 2010 data
- Costs calculated for saltcedar by canopy closure class and other vegetation classes excluding desert scrub



Water Cost Results

Saltcedar

Other Vegetation

Water Cost Results: Per-Acre Costs

Saltcedar

Results and Conclusions

- ET reduced by ~800 AF/yr between 2007 and 2010
- Theoretical avoided cost of \$8.1 million
- Management of remaining 1000 canopy acres could lead to additional water savings
- High density stands should be prioritized for removal
- Decrease in ET from upstream to downstream
- Desert scrub ET estimates likely overestimated
- Controlling regrowth less expensive than controlling established stands

Questions?

For additional information: Amy Witherall Water Resources Planner 951-695-5310 awitherall@usbr.gov

