### This presentation premiered at WaterSmart Innovations

watersmartinnovations.com





www.cartwright-consulting.com pscartwright@msn.com

#### **United States Office**

8324 16th Avenue South Minneapolis, MN 55425-1742 Phone: (952) 854-4911 Fax: (952) 854-6964 European Office President Kennedylaan 94 2343 GT Oegstgeest The Netherlands Phone: 31-71-5154417 Fax: 31-71-5156636

#### MEMBRANE TECHNOLOGIES FOR WATER RECLAMATION

by

Peter S. Cartwright, PE

WaterSmart Innovations 2011

October 5, 2011

### **Distribution of World Water Supply** (cubic miles)

| _                                                                                                   | FRESH                            | SALINE      | TOTAL       |
|-----------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|
| Rivers and streams<br>Freshwater lakes<br>Salt lakes and inland seas                                | 300<br>30,000                    | 25,000      |             |
| Total surface water                                                                                 | 30,300                           | 25,000      | 55,300      |
| Soil moisture and seepage<br>Underground water to ½ mile depth<br>Underground water to below ½ mile | 16,000<br>1,000,000<br>1,000,000 |             |             |
| Total ground water                                                                                  | 2,016,000                        |             | 2,016,000   |
| Glaciers and ice caps<br>Oceans                                                                     | 7,000,000                        | 317,000,000 |             |
| Total world water supply                                                                            | 9,046,300                        | 317,000,000 | 326,071,300 |

### **U.S. Water Usage**

- 39% Energy Production
- 40% Agriculture
- 11% Industry
- 10% Everything Else

### **Usage Requirements**

- Food for each person = 800 gpd
- 1 bottle of beer = 470 gallons
- 1 gallon of gasoline = 7-10 gallons
- 1 gallon of ethanol = 5-7 gallons
- 1 watermelon = 100 gallons

### Water Contaminants

| Class                    | Examples                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------|
| Suspended solids         | Dirt, clay, colloidal materials, silt,<br>dust, insoluble metal oxides and<br>hydroxides |
| Dissolved organics       | Trihalomethanes, synthetic organic chemicals, humic acids, fulvic acids                  |
| Dissolved ionics (salts) | Heavy metals, silica, arsenic, nitrate, chlorides, sulfates                              |
| Microorganisms           | Bacteria, viruses, protozoan cysts,<br>fungi, algae, molds, yeast cells                  |
| Gases                    | Hydrogen sulfide, methane, radon, carbon dioxide                                         |

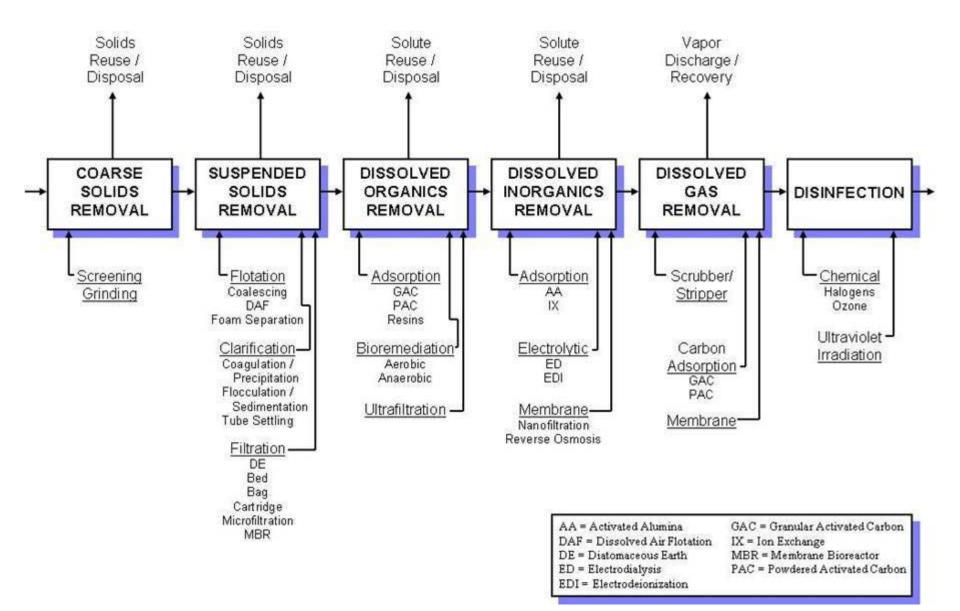
### **Treatment Technologies**

| Treatment Technologies      | Suspended<br>Solids Removal | Dissolved<br>Organic<br>Removal | Dissolved Salts<br>Removal | Microorganism<br>Removal |
|-----------------------------|-----------------------------|---------------------------------|----------------------------|--------------------------|
| <b>BIOLOGICAL PROCESSES</b> |                             |                                 |                            |                          |
| MBR (Membrane Bioreactor)   | X                           | _                               | —                          | Х                        |
| Activated sludge            | X                           | X                               | _                          | Х                        |
| Anaerobic digestion         | X                           | X                               | —                          | —                        |
| Bio-filters                 | —                           | X                               | _                          | —                        |
| EXTENDED AERATION           |                             |                                 |                            |                          |
| Bio-denitrification         |                             | L                               | _                          | —                        |
| Bio-nitrification           | X                           | X                               | —                          | —                        |
| Pasveer oxidation ditch     | X                           | X                               | _                          | X                        |
| CHEMICAL PROCESSES          |                             |                                 |                            |                          |
| CHEMICAL OXIDATION          |                             |                                 |                            |                          |
| Catalytic oxidation         | X                           | X                               | —                          | Х                        |
| Chlorination                | X                           | X                               | _                          | X                        |
| Ozonation                   | —                           | L                               | _                          | X                        |
| Wet air oxidation           | X                           | X                               | _                          | X                        |
| CHEMICAL PRECIPITATION      | —                           | _                               | X                          | —                        |
| CHEMICAL REDUCTION          | —                           | _                               | X                          | —                        |
| Ion exchange                | —                           |                                 | X                          | _                        |
| Liquid-liquid (solvent)     | —                           | _                               | X                          | —                        |
| COAGULATION                 |                             |                                 |                            |                          |
| Inorganic chemicals         | X                           | X                               | —                          | X                        |
| Polyelectrolytes            | X                           | X                               |                            | X                        |

L = under certain conditions there will be limited effectiveness

### **Treatment Technologies (con't)**

| Treatment Technologies        | Suspended<br>Solids Removal | Dissolved<br>Organic<br>Removal | Dissolved Salts<br>Removal | Microorganism<br>Removal |
|-------------------------------|-----------------------------|---------------------------------|----------------------------|--------------------------|
| ELECTOLYTIC PROCESSES         |                             |                                 |                            |                          |
| Electrodialysis               | —                           | _                               | X                          | L                        |
| Electrodeionization           | —                           | —                               | X                          | —                        |
| Electrolysis                  | —                           |                                 | X                          | _                        |
| Ultraviolet irradiation       | —                           |                                 | _                          | X                        |
| EXTRACTIONS                   |                             |                                 |                            |                          |
| INCINERATION                  |                             |                                 |                            |                          |
| Fluidized-bed                 | X                           | X                               | _                          | X                        |
| PHYSICAL PROCESSES            |                             |                                 |                            |                          |
| CARBON ADSORPTION             |                             |                                 |                            |                          |
| Granular activated            | X                           | X                               | _                          | _                        |
| Powdered                      | X                           | X                               | _                          | X                        |
| SPECIALTY RESINS              | —                           | L                               | L                          | —                        |
| FILTRATION                    |                             |                                 |                            |                          |
| Diatomaceous-earth filtration | X                           | _                               | _                          | X                        |
| Multi-media filtration        | X                           | _                               |                            | X                        |
| Micro-screening               | X                           | _                               | _                          | X                        |
| Sand filtration               | X                           | _                               | _                          | X                        |
| Flocculation-sedimentation    | X                           | _                               | _                          | X                        |
| DAF (Dissolved air flotation) | X                           | X                               | _                          | —                        |
| Foam separation               | X                           |                                 | X                          | —                        |


L = under certain conditions there will be limited effectiveness

## **Treatment Technologies (con't)**

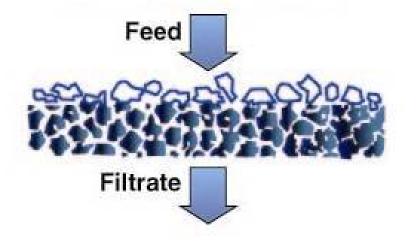
| Treatment Technologies   | Suspended<br>Solids Removal | Dissolved<br>Organic<br>Removal | Dissolved Salts<br>Removal | Microorganism<br>Removal |
|--------------------------|-----------------------------|---------------------------------|----------------------------|--------------------------|
| MEMBRANE PROCESSES       |                             |                                 |                            |                          |
| Microfiltration          | X                           | —                               | —                          | Х                        |
| Ultrafiltration          | X                           | Х                               | —                          | Х                        |
| Nanofiltation            | X                           | X                               | L                          | Х                        |
| Reverse osmosis          | X                           | Х                               | X                          | Х                        |
| Stripping (air or steam) | X                           | Х                               | _                          | _                        |
| THERMAL PROCESSES        |                             |                                 |                            |                          |
| Distillation             | X                           | Х                               | X                          | Х                        |
| Freezing                 | _                           | X                               | X                          | _                        |

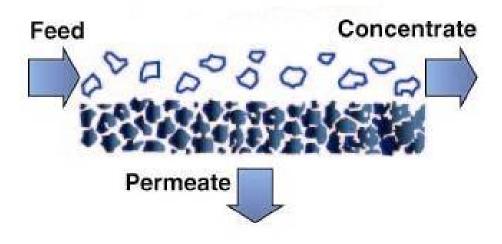
L = under certain conditions there will be limited effectiveness

#### INDUSTRIAL WASTEWATER TREATMENT



### **Membrane Technologies**

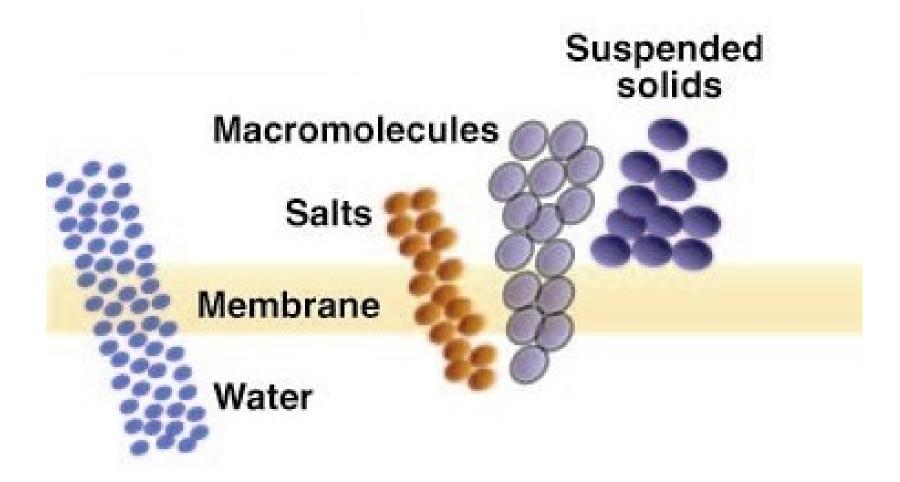

Microfiltration (MF)
 Ultrafiltration (UF)
 Nanofiltration (NF)
 Reverse Osmosis (RO)



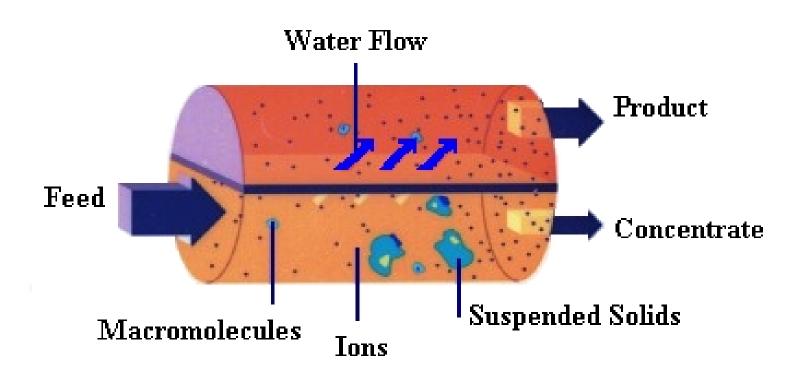

### Conventional vs. Crossflow Filtration

#### **Conventional Filtration**

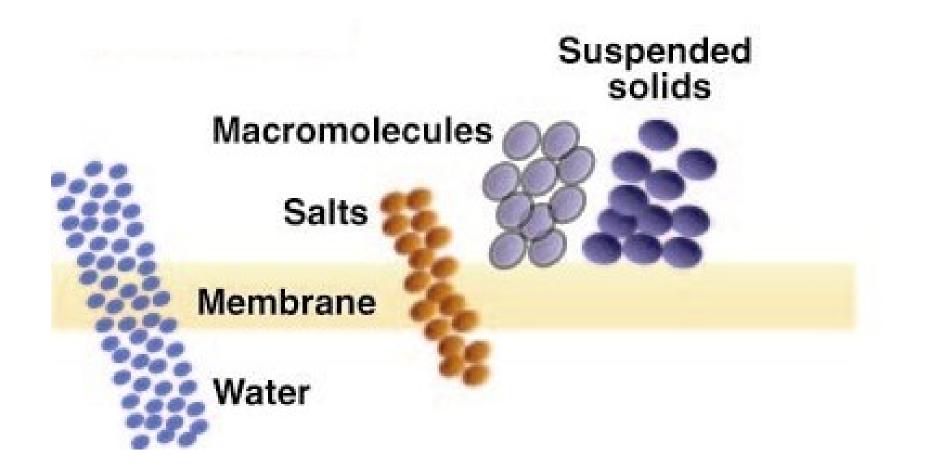




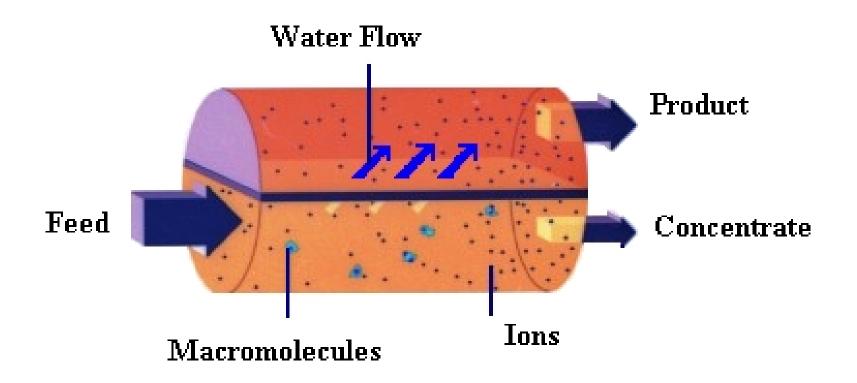




### Membrane Technologies Advantages

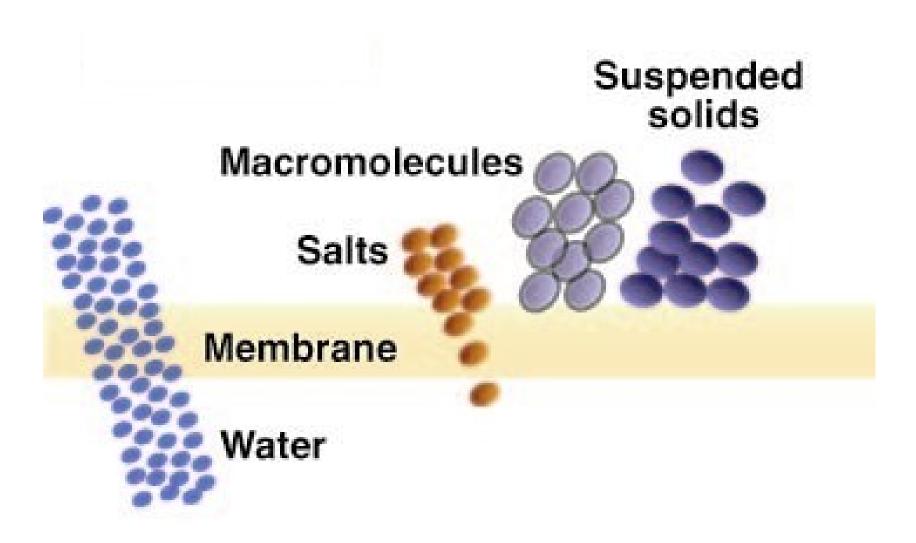
- ✓ Continuous and automatic operation.
- Capable of removing contaminants down into the submicron size range.
- ✓ Usually requires no chemical addition.
- ✓ Backwashing capabilities.
- Generally can operate in turbulent flow conditions.
- ✓ Systems have a very small footprint.


### **Microfiltration**

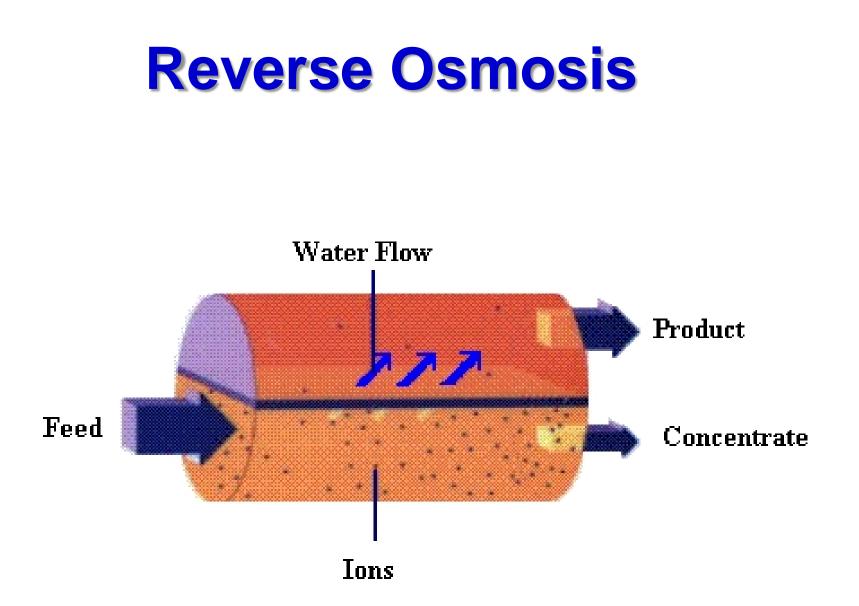


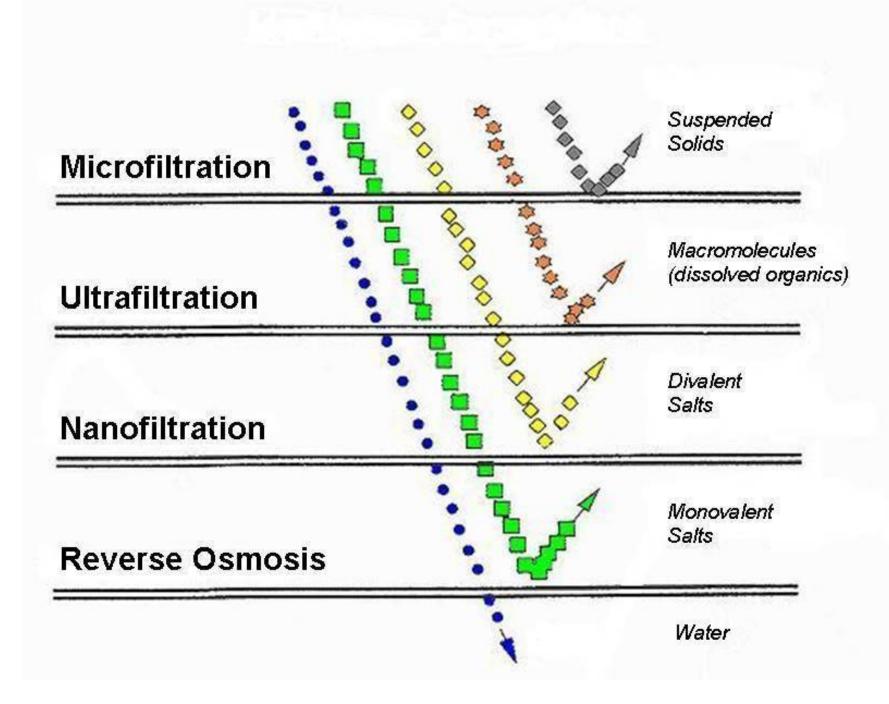

### **Microfiltration**




### Ultrafiltration




### Ultrafiltration




### Nanofiltration



# **Reverse Osmosis** Suspended solids Macromolecules Salts Membrane Water





### **Membrane Technologies Compared**

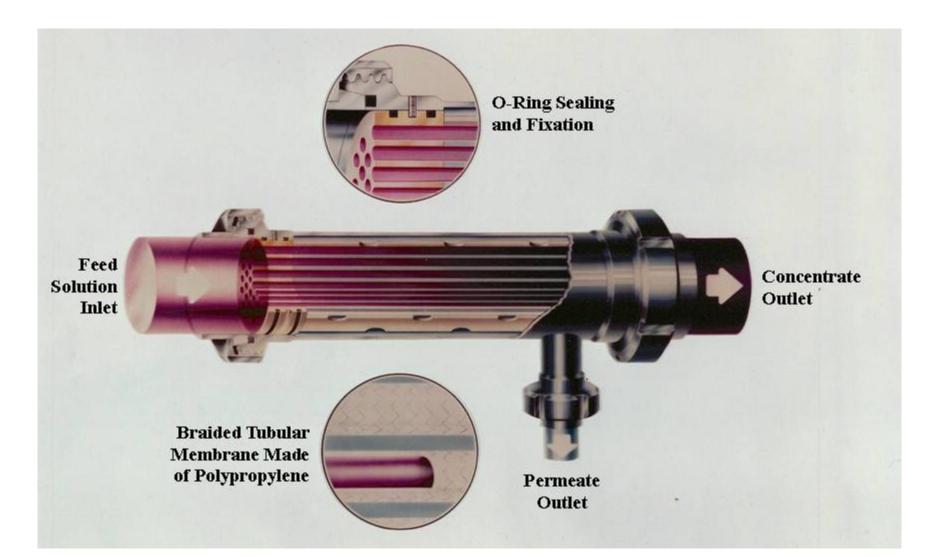
| Feature                                    | Microfiltration                                                                                                                              | Ultrafiltration                                                                                                 | Nanofiltration                       | Reverse Osmosis                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| Materials of Construction                  | Ceramics,<br>Sintered metals,<br>Polypropylene,<br>Polysulfone,<br>Polyethersulfone,<br>Polyvinylidene fluoride,<br>Polytetrafluoroethyliene | Ceramics,<br>Sintered metals,<br>Polypropylene,<br>Polysulfone,<br>Polyethersulfone,<br>Polyvinylidene fluoride | Thin film composites,<br>Cellulosics | Thin film composites,<br>Cellulosics |
| Pore Size Range<br>(micrometers)           | 0.1 - 1.0                                                                                                                                    | 0.001 - 0.1                                                                                                     | 0.0001 - 0.001                       | <0.0001                              |
| Molecular Weight Cutoff<br>Range (Daltons) | >100,000                                                                                                                                     | 1,000 - 100,000                                                                                                 | 300 - 1,000                          | 50 - 300                             |
| Operating Pressure Range                   | <30                                                                                                                                          | 20 - 100                                                                                                        | 50 - 300                             | 225 - 1,000                          |
| Suspended Solids Removal                   | Yes                                                                                                                                          | Yes                                                                                                             | Yes                                  | Yes                                  |
| Dissolved Organics Removal                 | None                                                                                                                                         | Yes                                                                                                             | Yes                                  | Yes                                  |
| Dissolved Inorganics<br>Removal            | None                                                                                                                                         | None                                                                                                            | 20-95%                               | 95-99+%                              |
| Microorganism Removal                      | Protozoan cysts, algae,<br>bacteria*                                                                                                         | Protozoan cysts, algae,<br>bacteria*, viruses                                                                   | All*                                 | All*                                 |
| Osmotic Pressure Effects                   | None                                                                                                                                         | Slight                                                                                                          | Moderate                             | High                                 |
| Concentration Capabilities                 | High                                                                                                                                         | High                                                                                                            | Moderate                             | Moderate                             |
| Permeate Purity (overall)                  | Low                                                                                                                                          | Moderate                                                                                                        | Moderate-high                        | High                                 |
| Energy Usage                               | Low                                                                                                                                          | Low                                                                                                             | Low-moderate                         | Moderate                             |
| Membrane Stability                         | High                                                                                                                                         | High                                                                                                            | Moderate                             | Moderate                             |

\* Under certain conditions, bacteria may grow through the membrane.

### **Device Configurations**

### Tubular

# Hollow (Capillary) Fiber


### **Spiral Wound**

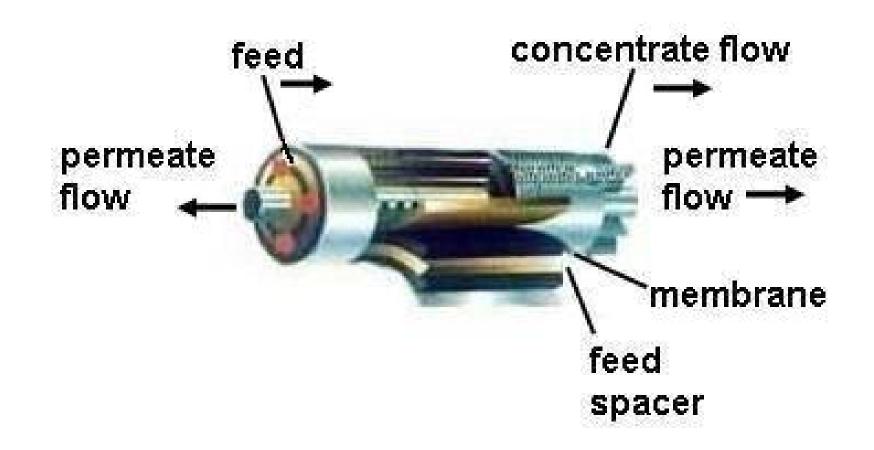
### Plate & Frame

### Tubular

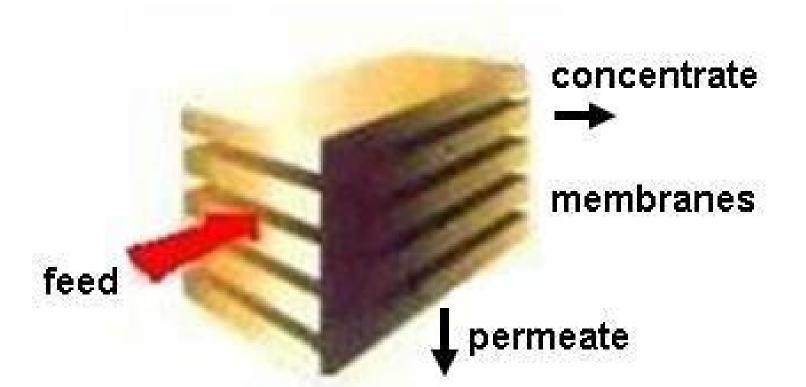


### Tubular



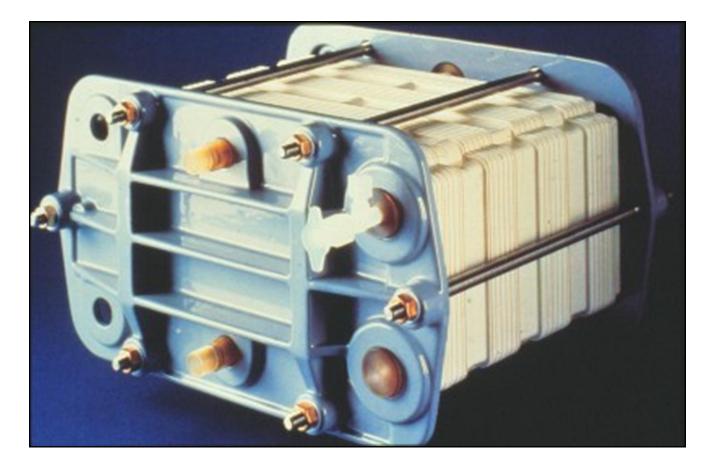

### Tubular




### Hollow (Capillary) Fiber



### **Spiral Wound**




### **Plate & Frame**





### **Plate & Frame**



## Membrane Element Configuration Comparison

| Element Configuration    | Packing Density * | Fouling Resistance ** |
|--------------------------|-------------------|-----------------------|
| Plate & Frame            | Low               | High                  |
| Hollow (Capillary) Fiber | High              | High                  |
| Tubular                  | Low               | Very High             |
| Spiral Wound             | Medium            | Low                   |

\* Membrane area per unit volume

\*\* Tolerance to suspended solids



### **Microfiltration (MF) & Ultrafiltration (UF)**

| Materials of               |              | Device Configuration |               |              |  |
|----------------------------|--------------|----------------------|---------------|--------------|--|
| Construction               | Hollow Fiber | Tubular              | Plate & Frame | Spiral Wound |  |
| Polymeric <b>Polymeric</b> |              |                      |               |              |  |
| PS                         | Х            | Х                    | X             | Х            |  |
| PES                        | Х            | Х                    | X             | Х            |  |
| PAN                        | Х            | Х                    | X             | Х            |  |
| PE                         | —            | Х                    | —             | —            |  |
| PP                         | Х            | Х                    | X             | —            |  |
| PVC                        | —            | Х                    | —             | —            |  |
| PVDF                       | Х            | Х                    | —             | —            |  |
| PTFE                       | Х            | —                    | X             | —            |  |
| PVP                        | Х            | Х                    | —             | —            |  |
| CA                         | Х            | —                    | —             | —            |  |
| Non-Polymeric              |              |                      |               |              |  |
| Coated 316LSS              | —            | Х                    | —             | None         |  |
| <i>a</i> -Alumina          | —            | Х                    | X             | None         |  |
| Titanium Dioxide           | _            | Х                    | _             | None         |  |
| Silicon Dioxide            | —            | Х                    | —             | None         |  |

*PS* = *Polysulfone PES* = *Polyethersulfone CA* = *Cellulose Acetate PE* = *Polyethylene PP* = *Polypropylene PAN* = *Polyacrylonitrile TF* = *Thin Film Composite* 

*PVDF* = *Polyvinylidene Fluoride PTFE* = *Polytetrafluoroethylene PVP* = *Polyvinylpyrrolidone* 

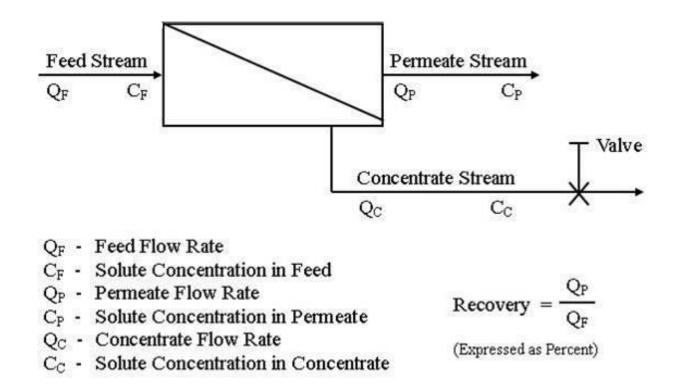
### Nanofiltration (NF) & Reverse Osmosis (RO)

| Materials of  |              | <b>Device Configuration</b> |               |              |  |  |
|---------------|--------------|-----------------------------|---------------|--------------|--|--|
| Construction  | Hollow Fiber | Tubular                     | Plate & Frame | Spiral Wound |  |  |
| Polymeric     |              |                             |               |              |  |  |
| PS*           | —            | Х                           | X             | Х            |  |  |
| PES*          | —            | Х                           | X             | Х            |  |  |
| CA            | —            | Х                           | X             | Х            |  |  |
| TF            | —            | Х                           | X             | Х            |  |  |
| Non-Polymeric |              |                             |               |              |  |  |
| None          |              |                             |               |              |  |  |

\* Base polymer below TF polymer

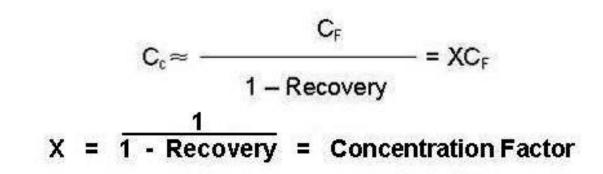
*PS* = *Polysulfone* 

*PES* = *Polyethersulfone* 


*CA* = *Cellulose Acetate* 

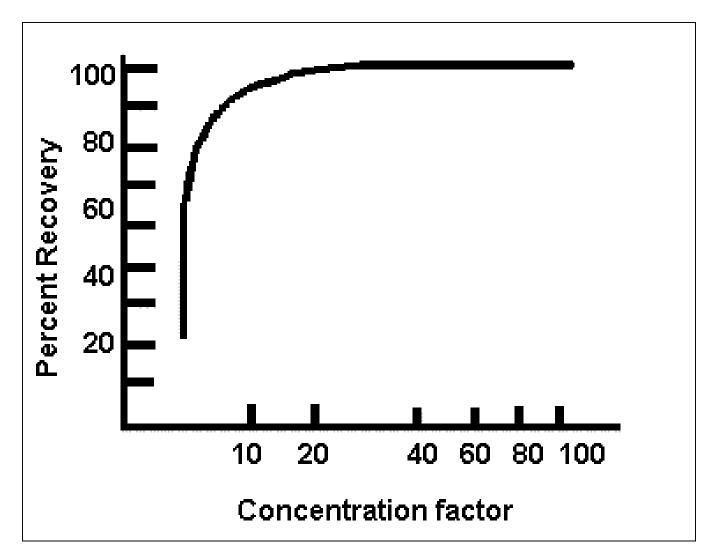
*TF* = *Thin Film Composite* 

### Membrane Element Cleaning Capability


|                       | Membrane   |     |     |               |                                    |  |  |
|-----------------------|------------|-----|-----|---------------|------------------------------------|--|--|
| Element Configuration | Technology |     |     | Backwashable? |                                    |  |  |
|                       | MF         | UF  | NF  | RO            |                                    |  |  |
| Plate & Frame         | Yes        | Yes | Yes | Yes           | No (except for inorganic membrane) |  |  |
| Tubular               | Yes        | Yes | Yes | Yes           | Yes                                |  |  |
| Hollow Fiber          | Yes        | Yes | Yes | No            | Yes                                |  |  |
| Spiral Wound          | Yes        | Yes | Yes | Yes           | No (NF, RO) Yes (MF, UF)           |  |  |

### Membrane System Schematic

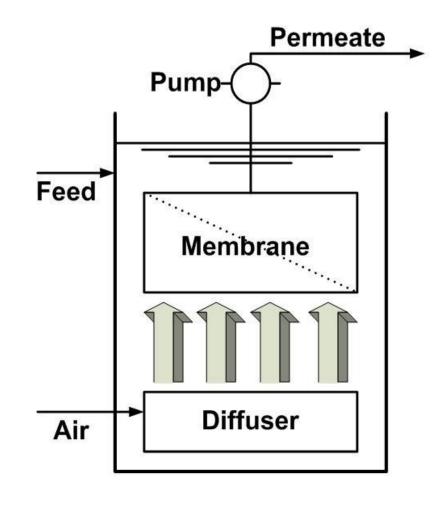



- TDS = Total Dissolved Solids: Usually considered the total of the ionic contaminants (salts) in solution.
- mg/L (milligrams per liter) is the same as ppm (parts per million)

### Effect of Recovery on Concentration

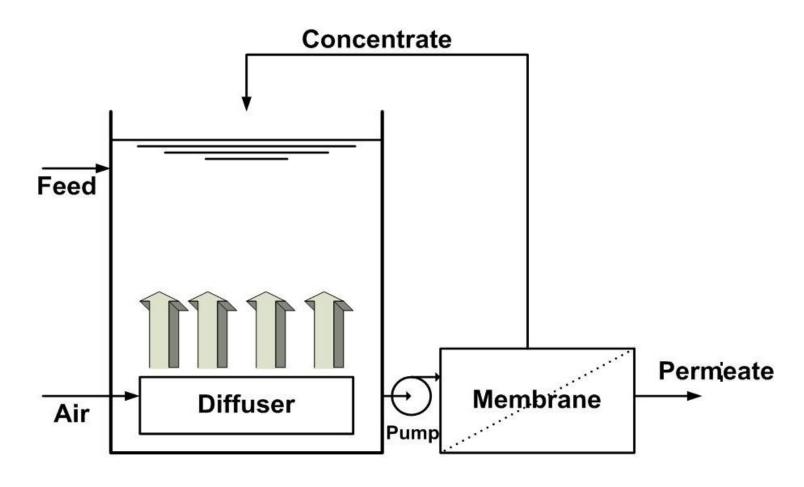


| Percent Recovery | Concentration Factor |
|------------------|----------------------|
| 33%              | 1.5                  |
| 50%              | 2                    |
| 67%              | 3                    |
| 75%              | 4                    |
| 80%              | 5                    |
| 90%              | 10                   |
| 95%              | 20                   |
| 97.5%            | 40                   |
| 98%              | 50                   |
| 99%              | 100                  |


### Effect of Recovery on Concentration Factor



#### MBR


- High-quality effluent, almost free of suspended solids.
- The ability to partially disinfect without the need for chemicals.
- Complete independent control of HRT (Hydraulic Retention Time) and SRT (Sludge Retention Time).
- Reduced sludge production.
- Process intensification through high biomass concentrations with MLSS (Mixed Liquor Suspended Solids) concentrations above 15,000 mg/L.
- Treatment of recalcitrant organic fractions and improved stability of processes such as nitrification.
- Ability to treat high strength wastes.

### **Aerobic MBR Applications**

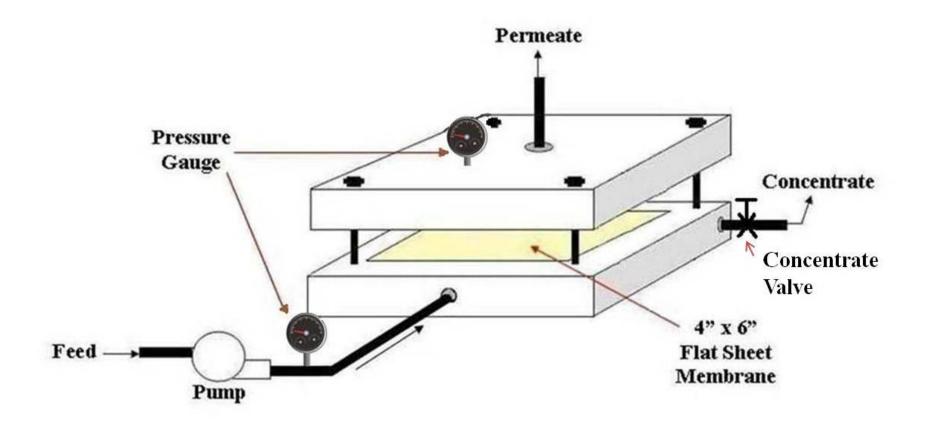


IMMERSED

### **Aerobic MBR Applications**



EXTERNAL


## **Design Factor Considerations**

- Optimum membrane element configuration
- Total membrane area
- Specific membrane polymer
- Optimum pressure
- Maximum system recovery
- Flow conditions
- Membrane element array
- Pretreatment requirements

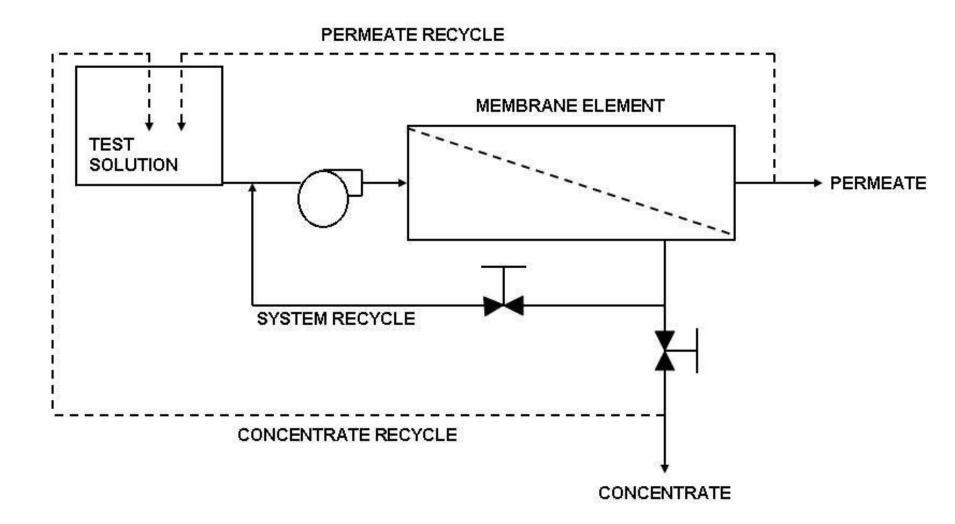
# TESTING



### **Cell Test Unit**






#### Advantages

- Only small areas of membranes are needed; excellent for screening various membranes
- Unit is simple to operate
- Can be run on small volumes of test stream
- Takes very little time

#### **Disadvantages**

- Cannot obtain engineering design data
- Cannot be used for long-term fouling studies
- Is only useful with membranes available as flat sheet

### Applications Test Schematic



### **Applications Testing**

- Run control (tap water or water treated with RO or DI)
  Take data (see Membrane Application Test Data Sheet)
- Run feedwater starting at low recovery, and after stabilization (usually less than 5 minutes) take data (see Membrane Application Test Data Sheet)

The system recovery is then increased incrementally while adjusting the recycle value to ensure that the correct crossflow velocity is maintained.



# **Applications Testing**

#### Advantages

- ▲ Fast
- Provides scale-up data
  (Flux rate, osmotic pressure as a function of recovery, pressure requirements, etc.)
- Can provide an indication of membrane stability

#### <u>Disadvantages</u>

- A Does not reveal long term chemical effects
- A Does not provide data on long term fouling effects



#### <u>Advantages</u>

Accomplishes all of the functions of the applications test plus provides long term membrane fouling and stability data.

#### **Disadvantages**

Expensive in terms of monitoring and time requirements.





#### MEMBRANE APPLICATION TEST DATA

Date:

Client: \_\_\_\_\_

Membrane Element: \_\_\_\_\_

|       | %<br>Recovery | PRESSURE        |  |  | FLOW    |          |             | ТЕМР | CONDUCTIVITY |   |             |
|-------|---------------|-----------------|--|--|---------|----------|-------------|------|--------------|---|-------------|
|       |               | Prefilter<br>∆P |  |  | Recycle | Permeate | Concentrate |      |              |   | Concentrate |
| Start |               |                 |  |  |         |          |             |      |              |   |             |
| End   |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      |              |   |             |
|       |               |                 |  |  |         |          |             |      | _            | • |             |
|       |               |                 |  |  |         |          |             |      |              | 6 |             |



#### WATER – CRITICAL TO LIFE

### Conservation, Collection & Conversion are practical, economical and essential

Water Recovery & Reuse is an achievable goal