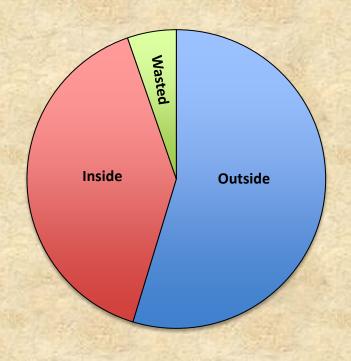
This presentation premiered at WaterSmart Innovations

watersmartinnovations.com


Managing Water in the West

(SECURE Water Act; Section 9503(c) – Reclamation Climate Change and Water 2011)

April 2011

How water is used in USA

Conserving water: at what cost?

- Wasted water/energy footprint
 - What's yours?
- A case study: Sierra Vista, AZ
- Δ mortgage vis-à-vis on-demand pumps

Presented by: Dave Grieshop, Managing Partner; Real ity LLC www.reality-llc.com

2009 Sierra Vista water/energy footprint*

(Wasted energy and water; 47K population)

Costs (\$)	<u>Likely</u>
Energy	3.8M
Water	310K
Treat (city)	299K
Water (gal)	135M
CO ₂ (metric tons emitted)	4,813

^{*} Excludes Fort Huachuca, all commercial and government buildings, pre-June 2000 apartments

(Wasted energy and water; Sierra Vista, AZ 47K population)

Source

1º home


Energy (\$M) 3.8 Water (Mgal)

135

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

<u>Source</u>	Energy (\$M)	Water (Mgal)
1º home	3.8	135
2º utilities*	n/a	18

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

<u>Source</u>	Energy (\$M)	Water (Mgal)
1º home	3.8	135
2º utilities*	n/a	18
3º water^	0.1	
4º treat^	0.1	

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

<u>Source</u>	Energy (\$M)	Water (Mgal)
1º home	3.8	135
2º utilities*	n/a	18
3º water^	0.1	
4º treat^	0.1	3

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

<u>Source</u>	Energy (\$M)	Water (Mgal)
1º home	3.8	135
2° utilities*	n/a	18
3° water^	0.1	2
4º treat^	<u>0.1</u> <u></u>	<u>3</u>
Total	4.0	158

^{*} Consumptive water: 2gal/kWhr and 0.9 gal/therm; ^ from CA Energy Comm study

A case study

(Sierra Vista, AZ)

June 2000

- Concern about reducing wasted water
- City council mandated recirculation loops
- Silent on pump choice

Late 2009

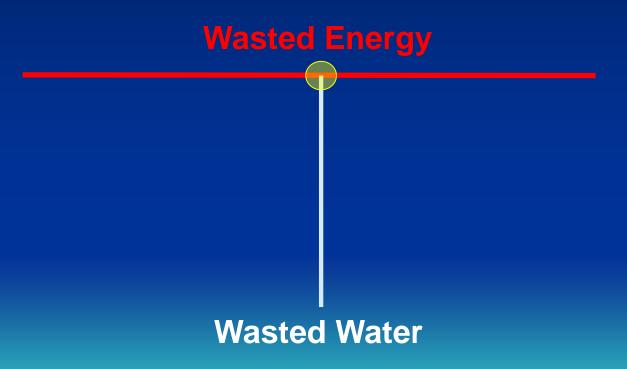
- Looked back
- Examined 3,600+ building permits

Case study modeling

(Sierra Vista, AZ)

- Examine one housing unit in depth
- Conservative modeling
 - Official city data only
 - 'gold standard' of studies; EPA gathered
- Aggregate to community
 - Sensitivity analyses

A case study


(Sierra Vista, AZ)


Reference point: standard plumbing


A case study

(Sierra Vista, AZ)


Reference point: standard plumbing

June 2000 Policy Consequences

(de facto policy became: timer pumps with recirculation line)

Type pump

timer

Wasted water

-50%

Energy costs

+110%

Not using

~ 40%

June 2000 Policy Consequences

(de facto policy became: timer pumps with recirculation line)

Type pump

timer

on-demand

Wasted water

-50%

-86%

Energy costs

+110%

-58%

Not using

~ 40%

June 2000 Policy Consequences

(de facto policy became: timer pumps with recirculation line)

Type pump

timer

on-demand

Wasted water

-50%

-86%

Energy costs

+110%

-58%

Not using

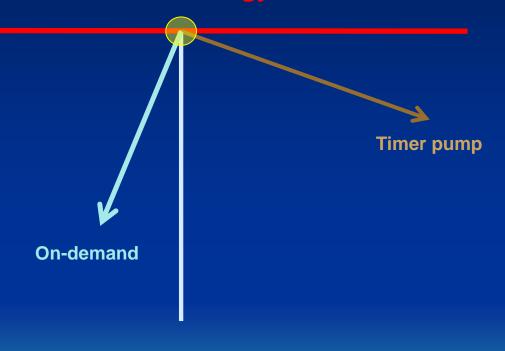
~ 40%

 $\rightarrow 0$

Reference Point

(Standard Plumbing)

Wasted Energy


Timer pump

Wasted Water

Reference Point

(Standard Plumbing)

Wasted Energy

Wasted Water

Why on-demand pumps shine!

(Wasted energy & water: electric WH; annualized)

<u>ltem</u>	<u>Standard</u>	<u>Timer</u> *	On-demand
Install	\$0	\$800	\$800
• Energy, \$	\$152	\$787	\$76
• Water, \$	17	3	3
 Water, gal 	8,700	1,200	1,200

^{*} Timer pump operating 16 hours / day

Lessons Learned

- Sierra Vista's 2000 mandate should have been:
 - Require on-demand pumps
 - Silent on dedicated recirculation lines
- 13-18 pumps offset water used by 1 new home
- PV(city's treat waste) = \$122; revenue neutral rebate
- On-demand pump dilemma:
 - sticker shock versus value added

Δ Mortgage vis-à-vis on-demand pump (An opportunity!)

Wasted energy

\$

Wasted water

Δ Mortgage vis-à-vis On-demand Pump

- New construction
 - Builder: least-cost focus
 - Buyer: emotional / rational but unaware
- Trade off
 - Incremental (Δ) mortgage increase
 - No out-of-pocket expense
 - Utilities' cost avoidance

Δ Mortgage versus On-demand Pump*

(electric water heater; annualized)

<u>Item</u>	<u>Amount</u>
Pump + install	\$800
• Δ Mort (15-yr, 4.75%)	-\$75
 Utilities conserved 	\$106
• Net savings	\$31
• and, water saved; gal	6,100

^{*} Based on 2010 EIA <u>national</u> energy costs, no local taxes; water & sewer = \$6/Kgal

Δ Mortgage versus On-demand Pump*

(natural gas water heater; annualized)

<u>Item</u>	<u>Amount</u>
Pump + install	\$800
• Δ Mort (15-yr, 4.75%)	-\$75
 Utilities conserved 	\$72
• Net savings	(\$3)
• and, water saved; gal	6,100

^{*} Based on 2010 EIA <u>national</u> energy costs, no local taxes; water & sewer = \$6/Kgal

Conclusions

- Status quo has costs; baseline
- Water can be conserved while
 - Reducing total utility costs
 - Minimizing the ripple effect
- Δ mortgages / on-demand pumps = smart
 - \$0 out-of-pocket with a positive return!
- Need: consumer & builder education