This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Use Forecasting Sustainable Residential Development in California: A Case Study

> Matthew P. Zucca, P.E. Erler & Kalinowski, Inc.

> > 6 October 2011

alinowski, nc.

Project Overview

- Planned community in California
- More than 10,000 housing units
- High density (12 du/acre to 125 du/acre)
- Primarily residential, but includes CII uses

Objectives

- Create a flexible water needs planning tool
- Develop total project potable and non-potable water needs incorporating "CalGreen Code" requirements
- Evaluate potable water use reductions associated with wide use of reclaimed water
- Demonstrate to local land use authority the projected water needs for the project
- Support the development of a Water Supply Assessment as part of the EIR

Water Use Differences for the Project

- Developer-imposed requirement for only using Tier 3 highefficiency clothes washers
- Use of reclaimed water for flushing toilets
- High density, but relatively high occupancy compared to typical MFR
- Community open space instead of individual residential landscaping
- Outdoor irrigation with reclaimed water

Basis for Water Use Estimate

- Recent studies provided significant new information regarding end uses for
 - Existing homes in California
 - Standard Homes Constructed after 2001
 - New, High-Efficiency Homes
- Information provided a new basis upon which to estimate the water demands and conservation savings for a new development
- Utilize measured data from new, high-efficiency homes to develop reasonable estimate of Project water use

References

- 1. DeOreo, William B., 2011. California Single Family Water Use Efficiency Study, dated 20 April 2011
- 2. DeOreo, William B., 2011. Water Efficiency Benchmarks for New Single-Family Homes - Final Report, dated 24 March 2011.
- 3. Mayer, Peter and DeOreo, William, et al., 1999. *Residential End Uses of Water*. American Water Resources Association Research Foundation, 1999
- 4. UCCE/DWR, 2000. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California, University of California Cooperative Extension and California Department of Water Resources. August 2000

Definitions

• AWWARF Home:

- Homes whose water use was measured as part of the Residential End Uses of Water Study, AWWARF, 1999
- Local Home:
 - Based upon local end water use data within Project area
- Existing Home:
 - Homes within California regardless of the year of construction.
 - Study areas within California.

• Standard Home:

- These homes were built after 1 January 2001
- Study areas across United States
- High-Efficiency Home:
 - Are built using the USEPA WaterSense New Home specification or better.
 - Study areas in California and Oregon

Comparison of Average Daily Water Use from Various Data Sources

Distribution of Measured Toilet Flush Volumes (3 per/du)

Measured Toilet Flush Volume (gal/flush)

Distribution of Measured Laundry Load Volumes (3 per/du)

Measured Laundry Load Volume (gal/load)

Erler & Kalinowski,

Distribution of Measured Daily Leak Volumes (3 per/du)

Measured Leak Volume (gal/day)

Comparison of Local Homes to High Efficiency Homes

Water End Use

Local Homes High Efficiency Homes

Erler & Kalinowski,

Comparison of Local Homes to High Efficiency Homes

Water End Use

Local Homes High Efficiency Homes

Comparison of Local Homes to High Efficiency Homes

LEGUILO MON

Residential Indoor Water Use

Residential Outdoor Water Use

Outdoor Demand

 UCCE / DWR, "A guide to Estimating irrigation Water Needs of Landscape Plantings in California, The Landscape Coefficient Method and WUCOLS III" (2000)

Landscape Coefficient Method and WUCOLS

- Climate Factors ET, Rainfall
- Landscape Factors Plant varietals, density
- Project Specific Factors Landscape area, types of plantings

ET and Precipitation

California Irrigation Management Information System

* <u>m</u> Calif	ORNIA THE GOLDEN STATE	CALIFORNIA GOVERNOR'S HOMEPAGE HOMEPAGE	
CALIFORNIA IRRIGATION MANAGEMENT INFORMATION SYSTEM DEPARTMENT OF WATER RESOURCES OFFICE OF WATER USE EFFICIENCY			
WELCOME CENTER	CIMIS RESOURCE MY CIMIS SPATIAL Data CENTER MY CIMIS CIMIS		
General Events	Welcome		
System News FAQs	CIMIS Overview The California Irrigation Management Information System (CIMIS) is a		
CIMIS Staff	program in the Office of Water Use Efficiency (OWUE), California Department of Water Resources (DWR) that manages a network of over		
upcoming Events	120 automated weather stations in the state of California. CIMIS was		
New Feature - Email Scheduler	developed in 1982 by the California Department of Water Resource and the University of California at Davis to assist California's irrigators manage their water resources efficiently. Efficient use of water resources benefits Californians by saving water, energy, and money. (more)		
Non-ideal site study update			
Software and Hardware Improvements	CIMIS Data Uses	And Anna Anna Anna Anna	
Current System News	Since the beginning of the CIMIS weather station network in 1982, the primary purpose of CIMIS was to make available to the public, free of The norr	System Status: mal Maintenance window is:	
New Station (#211) in Gilroy.	charge, information useful in estimating crop water use for irrigation scheduling. Although irrigation scheduling continues to be the main use of CIMIS, the uses have been constantly expanding over the years. At	Wednesday 02:00 - 04:00 PM	

Landscape Coefficients Based on UCCE / DWR Studies

Category of Planting	Example Plantings	Water Use Coefficient
High Water Use	Turf	o.8
Low Water Use	Drought Tolerant	0.4

Outdoor Demand UCCE / DWR Model Parameters

Outdoor Demand Calculations

Comparison of Indoor Water Demands

Kalinow Inc.

Comparison of Indoor <u>Potable</u> Water Demands

Normalized Occupancy 2.8 per/DU

Total Average Per Capita Residential Water Use

Summary

• How Did We Get There?

- Very high density development with community open space
- All new, high-efficiency fixtures
- Requirements for high-efficiency clothes washers
- Use of recycled water for flushing toilets and irrigation
- Conservative in assumptions regarding "Other" demands (15 gphd)
- What does it mean for this community?
 - 1,400 AFY or 1.7 MGD of total residential water use
 - 1,200 AFY or 1.3 MGD of total <u>potable</u> residential water use
 - Compared to a "typical" SFR residential water use estimate of 0.3 AFY/DU, which would result in 3,600 AFY or 3.1 MGD water use

But is it Real

- AMI installation and remote monitoring
- Better technologies Unmeasured flow reducers, o.8 gpf toilets
- Pre-construction and pre-sale documents and agreements
- Point-of-sale inspections
- Water audits and surveys

Thank you Any Questions?

mzucca@ekiconsult.com (650) 292-9100

