This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Acknowledgements

USGBC

- Sean McMahon
- Rick Fedrizzi

RESEARCH TEAM

- Jim Schuessler, BNIM
- Phil Barnes, Kansas State University
- David Dods, URS Corporation

TECHNICAL REVIEW TEAM

- Alex Wilson, BuildingGreen, Inc.
- Bill Swietlek, EPA Green Building Program
- Jason Ghidotti, FTN Associates, Ltd.

Agenda

- **Project Goals**
- **Equipment**
- Site Design
- **Stormwater Monitoring Findings**
- **10 Important Takeaways**

Project Goals

- **Promote BMPs**
- **Raise Awareness of What is Possible**
- **Understand How Design and Site Features Affect Performance**

Research Concepts

Storm Water Monitoring

- Quality and Quantity
 of runoff is measured
 at both the Inflow (A)
 & Outflow (B) of
 Stormwater BMP's.
- Results from the outflow are compared to the results from the inflow, showing the degree of improved water quality and quantity (C).

$$A - B = C$$

Teledyne ISCO 6712 Portable Samplers

- Monitors flow and takes samples of runoff for lab quality tests.
- Flow Measured by Bubble Tube and logged into the ISCO computer.

WaterSmart Innovations | October 6 | 6

Infiltration Testing

- Piezometer: Measures and logs water level in detention area.

Photo: Jim Schuessler

Onset Data Logging Rain Gauge (Rooftop Tipping Bucket)

- Monitors Rainfall Intensity
- Rainfall Quantity Measurements and Logging
- Total Volumes

Software

- Flow Link (ISCO)
- **HOBOware** (Tipping Bucket & Piezometer)

Soil Sampling

- Test Particle Size Distribution
- pH
- Zinc
- Organic Mater
- Soil Moisture

Data Collection

Properties Tested _ Total Suspended Solids (TSS)

- Total Nitrogen (TN)
- Total Phosphorus (TP)
- Zinc (Zn)
- Chloride (CI)
- Sulfate (S)
- Electrical Conductivity (EC μS)
- Fecal Coliforms (Ecoli)

Selected Sites

4 BMP Sites, 3 Locations Urban, Suburban, and Small Community

Monitoring Site #1

City Union Mission, Infiltration Basins Completed 2008

Infiltration Basin

Section

- Inlet Pipe
- Level Spreader
- 3' Engineered Soil
- 787 CF

	City Union Mission Cell No. 1											
Event	Date	Rain Depth (in)	Rain Depth (ft)	Flow Volume (ft ³)								
1	3/24/10	0.56	0.047	327								
	3/27/10	0.57	0.048	333								
2	4/2/10	0.29	0.024	169								
	4/6/10	0.58	0.048	338								
	4/6/10	1.19	0.099	694								
3	4/22/10	1.89	0.158	1103								
	4/24/10	0.50	0.042	292								
	4/24/10	0.52	0.043	303								
4	5/10/10 1.63		0.136	951								
	5/12/10	1.67	0.139	974								
	5/13/10	0.71	0.059	414								
	5/19/10	0.69	0.058	403								
5	6/2/10	0.73	0.061	426								
6	6/8/10	1.34	0.112	782								
7	6/12/10	1.69	0.141	986								
	6/14/10	0.99	0.083	578								
8	7/5/10	1.42	0.118	828								
9	7/11/10	1.79	0.149	1044								
10	7/20/10	1.22	0.102	712								
	7/24/10	0.81	0.068	473								

According to this calculation we should have had standing water on 9 of 20 sampling events (with overflows on 5 of 20).

Union City Mission 2010 Rainfall and Water Depth in Cell 1

Union City Mission 2010 Rainfall and Water Depth in Cell 3

Root Growth

 Cordgrass roots reach 30 inches deep.

Findings

City Union Mission, Infiltration Basins

- Site Characterization
- Plant Root Benefits
- Cost

Monitoring Site #2

Applebee's Courtyard, Raingardens (Completed December 2007)

Typical Downspout

Equipment Attachment

Outlet Structure

Water Quality

- Modest pollutant removal56% Reduction of TN50% Reduction of TP
- Exported some constituents

			Appleb	ee's Cou	ırtyard '	'In"							
Rain Event	Event	Location	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	рН	EC µS	TSS		
5/15/2009		First Flush	1.01	3.91	0.11	0.11	5.46	ND	6.8	85	11		
6/15/2009		First Flush	1.47	5.3	0.06	0.14	2.94	1.00	6.8	74	19		
6/27/2009	1	First Flush	0.48	4.33	1.07	0.02	ND	ND	6.8	46	97		
4/2/2010			0.43	No Sample									
5/12/2010	3		0.58	No Sample									
5/26/2010	4	First Flush	0.34	1.14	0.06	ND	0.23	0.24	7.33	23	43		
5/26/2010		First Flush	0.34	1.54	0.07	ND	0.15	0.72	7.40	46	68		
6/2/2010	5	First Flush	0.49	1.46	0.06	ND	0.15	0.31	7.38	25	4		
6/8/2010	6	First Flush	1.60	1.26	0.04	ND	0.19	0.48	7.29	20	20		
6/14/2010		Bottle 1	1.31	No Sample									
6/14/2011	7	Composite	1.31	0.71	0.04	ND	0.15	ND	7.00	18	36		
6/14/2011		First Flush	1.31	0.69	0.06	ND	0.15	ND	7.25	13	60		

			Applebe	e's Cour	rtyard "	Out"								
Rain Event	Event	Location	Precip	TN ppm	TP ppm	Zn ppm	n ppm CI ppm S ppm pH EC μS T							
6/27/2009	1	First Flush	0.48	1.39	0.06	0.08	0.77	1.87	7.2	95	112			
5/10/2010	2		1.06	No Sample										
5/12/2010	3	First Flush	0.58	1.03	0.10	0.04	13.70	1.53	7.28	73	48			
5/13/2010			0.88	No Sample										
5/26/2010	4	First Flush	0.34	2.09	0.10	0.02	1.74	1.74	7.40	72	116			
6/2/2010	5	Composite	0.49	1.43	0.08	ND	1.33	2.35	7.72	73	44			
6/2/2010		First Flush	0.49	1.43	0.08	ND	0.37	1.07	7.73	52	16			
6/8/2010	6	First Flush	1.60	0.96	0.04	0.02	0.21	2.90	7.92	115	72			
6/8/2010		First Flush	1.60	1.53	0.07	ND	0.78	1.67	7.42	76	48			
6/14/2010			1.31	No Sample										
6/14/2010	7	Composite	1.31	1.12	0.05	ND	0.23	0.94	7.44	79	60			

Findings

- Undersized for Larger Storm Events
- Distribution of Flows

Monitoring Site #3

Applebee's Treatment Train Sand Filter and Sediment Forebays Completed 2008 Wetland Planted Fall 2009

Watershed **Vegetated Swales Sediment** Forebays Raingarden **Bioretention Cells** Sand Filter Wetland Legend Renner Road Watershed **Parking Lot Watershed BMPs**

Water Flow Diagram

Treatment Train

30" Inlet from Parking Lot

Sand filter w/ Sediment Forebay

Wetland

½ Acre

- Sand Filter Runoff
- First Flush from Renner Road

Photos: Jim Schuessler

Water Quality

Sand Filter and Sediment Forebay

- Removal Average of 117 mg/l of TSS Reduction of TN and TP
- **Compared to Renner Runoff Better Water Quality** (except Chloride and Sulfur)

			Applel	ee's Sa	nd Filte	r "In"						
Rain Event	Event	Note	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	pН	EC µS	TSS	
6/27/2009		First Flush	0.48	3.17	0.29	0.04	42.95	16.26	7.4	315	47	
9/21/2009		First Flush	0.97	5.02	0.32	0.09	21.37	11.57	7.3	282	45	
4/2/2010			0.43	No Sample								
4/23/2010	2	First Flush	0.46	1.10	0.07	ND	62.40	15.78	7.36	348	116	
4/23/2010		First Flush	0.46	1.10	0.07	ND	112.70	13.61	7.41	449	48	
4/24/2010	3	First Flush	0.47	2.37	0.05	0.02	148.30	28.92	7.14	654	48	
5/10/2010	4	First Flush	1.06	3.53	0.12	0.02	143.40	32.62	7.62	695	160	
5/10/2010		First Flush	1.06	1.63	0.07	ND	64.30	11.23	7.51	312	172	
5/12/2010	5	First Flush	0.58	1.13	0.05	ND	47.90	9.26	7.51	267	44	
5/13/2010			0.88	No Sample								
5/15/2010			0.35	No Sample								
5/19/2010	6	First Flush	0.9	1.12	0.02	0.02	100.50	18.25	7.43	489	90	
5/20/2010	7	First Flush	0.26	2.07	0.27	ND	22.10	4.19	7.21	149	48	
5/26/2010	8	First Flush	0.34	2.99	0.24	ND	26.53	19.72	7.79	337	168	
6/1/2010	9	First Flush	0.16	2.09	0.13	ND	12.87	7.70	8.02	201	196	
6/2/2010	10	First Flush	0.49	3.69	0.23	ND	57.57	25.38	8.28	499	136	
6/2/2010		Bottle 6	0.49	2.73	0.36	ND	48.25	7.05	8.17	235	48	
6/8/2010	11	First Flush	1.60	3.02	0.10	ND	20.73	15.12	7.90	514	128	
6/8/2010		First Flush	1.60	2.43	0.50	ND	40.47	8.44	7.92	257	75	
6/14/2010			1.31				No Sar	nple				
6/14/2010			1.31				No Sar	nple				
7/11/2010			0.85				No Sar	nple				
7/11/2010			0.85	No Sample								
7/16/2010	12	First Flush	0.7	0.97	0.04	ND	2.70	0.33	7.55	18	32	
7/16/2010			0.7				No Sar	nple				
7/20/2010		First Flush	0.83	0.75	0.03	ND	2.60	0.30	7.33	18	40	

			Appleb	ee's San	d Filter	"Out"								
Rain Event	Event	Notes	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	pН	EC µS	TSS			
6/27/2009		First Flush	0.48	2.92	0.07	0	63.92	17.57	7.5	442	12			
4/2/2010	1	First Flush	0.43	3.77	0.22	ND	208.00	56.87	7.52	940	80			
4/23/2010	2	First Flush	0.46	0.56	0.06	ND	91.20	9.85	7.42	361	20			
4/23/2010			0.46	No Sample										
4/24/2010	3		0.47	No Sample										
5/10/2010	4	First Flush	1.06	0.65	0.06	0.01	81.30	9.16	7.37	343	108			
5/12/2010	5		0.58				No Sar	nple						
5/26/2010	8	First Flush	0.34	3.46	0.06	ND	631.90	69.06	7.85	2590	24			
5/26/2010	8	Composite	0.34	1.62	0.07	ND	97.96	16.41	7.54	496	36			
5/26/2010		First Flush	0.34	1.98	0.09	ND	118.36	18.66	7.62	578	72			
6/2/2010	10	First Flush	0.49	1.29	0.09	ND	59.44	10.78	8.06	343	44			
6/8/2010	11	First Flush	1.60	1.36	0.08	ND	68.76	14.69	8.08	489	60			
7/11/2010			0.85				No Sar	nple						
7/11/2010			0.85	No Sample										
7/16/2010			0.7	No Sample										
7/16/2010			0.7	No Sample										
7/20/2010	13	Grabbed	0.83	1.13	0.09	ND	42.30	8.87	7.46	324	15			

Water Quality

Wetland

Poor Performance

Unstabilized spillway Newly planted vegetation Water fowl

				Applet	ee's We	tland								
Rain Event	Event	Notes	Precip	TN ppm	TP ppm	Zn ppm	CI ppm	S ppm	рН	EC µS	TSS	EColi		
4/22/2010	1	Composite	1.28	1.37	0.08	ND	308.30	31.14	7.44	1040	52	0		
4/24/2010	2	Composite	0.47	1.47	0.07	ND	166.80	23.46	7.32	712	48	0		
4/30/2010	3	First Flush	0.40	1.87	0.04	ND	362.50	49.61	7.53	139	96	8		
5/10/2010	4	First Flush #9	1.06	2.57	0.10	ND	306.80	44.47	7.70	1180	96	10		
5/12 - 5/13			0.58	No Sample										
5/19/2010	5	Composite	0.90	2.38	0.05	ND	262.90	38.33	7.55	109	116	25		
5/26/2010	6	Composite	0.34	2.57	0.35	ND	109.07	21.69	7.67	596	688	1921		
5/26/2010	6	First Flush #1	0.34	5.03	1.28	ND	134.94	27.99	7.80	720	2552	3842		
6/1/2010	7	First Flush #1	0.16	2.69	0.28	ND	67.32	14.61	8.04	429	420	2180		
6/2/2010	8	Composite	0.49	1.79	0.18	ND	44.18	9.36	7.74	259	180	4045		
6/2/2010		First Flush	0.49	2.09	0.14	ND	171.35	29.17	7.78	851	200	2757		
6/8/2010	9	Grab Sample	1.60	0.97	0.12	ND	101.85	10.56	8.18	326	188	1659		

Findings

Applebee's Treatment Train

- Success of Sand Filter
- Wetland Performance
- Calcium Chloride
- Renner Road

Photos: Jim Schuessler

Monitoring Site #4

The University of Kansas, Modified Detention Basin / Raingarden Planted Spring 2008

Watershed

Legend

Raingarden Watershed

Roof Watershed (Control Area)

Level Spreader

Manhole with Multiple Outlets Outlet into Raingarden

1st Growing Season

2nd Growing Season

Total Soil Moistue (Inches) University of Kansas 2010

Time to Recorded Runoff

 1 hr, 20 min Longer Through Rain Garden

1) Preserve the Existing Landscape

 It is easier to preserve the landscape than to rebuild it

2) Development Significantly Disturbs Site Soils

- Construction causes loss of plants, topsoil, and soil structure
- Stabilize sites before finishing BMPs. Erosion is the enemy of BMPs.
- Restore site soils to promote healthy plants

3) Site Characterization Informs Design

- Soil type and compaction
- Fill material
- Depth to bedrock and groundwater

4) Size is Important. Properly Sized BMPs:

- More effectively remove pollutants
- Convey large storms without erosion

5) Learning from Mother Nature (1): Distributed Systems

 Distributed systems are less prone to overall failure if one part has problems

6) Learning from Mother Nature (2): Diversity

- Diverse systems are more resilient than monocultures
- If you lose one plant, the entire system doesn't fail

7) Plant Material is Important

- Plants promote infiltration, prevent erosion, remove pollutants, and build soil
- Match plants to moisture zones in the garden

8) Keep Designs Simple

- The more complex the system, the more difficult to build and maintain
- This is especially important if BMPs are new to the construction industry

- 9) Low Cost Can Still be Effective
- 10) Stormwater Management Can be Beautiful

Thank You

Jim Schuessler

BNIM Kansas City, MO 816.783.1608

jschuessler@bnim.com

Twitter: jamesschuessler

Phil Barnes

Kansas State University Manhattan, KS 785.532.2921 lbarnes@ksu.edu

David Dods

URS Corp., Overland Park, KS 913.344.1022 david_dods@urscorp.com

Document Location

http://issuu.com/bnim/docs/bmp_full_report

Or

Scan the QR Code above using a smart phone QR code scanner