This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Conservation Tools

Chris Brown Water Smart Innovations Las Vegas, NV October 6, 2011

Planning Ahead

- Cost Effectiveness Analysis
- Avoided Costs and Environmental Benefits
- Waste Water Avoided Costs
- Water Rate Evaluation and Design Tool
- Cost and Savings Study and Flex Track Menus
- DSS Model
- To be released: New CEA Tool

Traditional CEA Tools

- CUWCC
 - Coverage Calculator
 - Simple CEA Models for BMPs
 - Direct Utility Avoided Cost Model
 - Environmental Benefits Model

Things You Need to Know or Estimate to Apply CEA to Water Conservation

- 1. What does the water conservation measure entail?
- 2. What will it cost to implement?
- 3. How much water will it save?
- 4. What is the value of the saved water?
- 5. What other benefits or costs should you take into account?

Value of Saved Water

Utility/Ratepayer

- a. Avoided O&M (water & wastewater)
- b. Avoided Water Purchases
- c. Deferred/Downsized Capital Projects (water & wastewater)
- d. Revenues from other entities
- e. Avoided Shortages
- Program Participant
 - a. Reduced water bill
 - b. Reduced energy bill
 - c. Other

Society

- a. All the above, excluding Transfer Payments
- b. Environmental benefits

Cost and Savings Study

- To supplement CUWCC's existing *CEA Guidelines*
- To identify and summarize the best available information about program costs and water savings;
- To assess the reliability and exportability of information for quantifying and valuing conservation activity and for preparing cost-effectiveness exemption claims; and
- To identify the absence of, and note critical deficiencies in, cost and savings estimates.

It Does Not:

- Provide or endorse the use of single, uniform estimates
- Pretend to provide definitive or complete estimates. Highlights the limitations of currently available estimates

Avoided Costs and Environmental Benefits

- Total Savings
 - Need to estimate total savings for entire conservation program, not just individual measures.
- Marginal Supply Source
 - Which supply source will savings displace?
 - Which costs truly avoidable?
- Magnitude and Timing of Savings
 - Are savings sufficiently large to defer/ resize expansion?
 - How are savings split between peak/offpeak
- Other System Impacts
 - Are wastewater operating costs avoided?
 - Are savings sufficiently large to defer/ resize expansion?

Deferral/Downsize Decision

Direct Utility Avoided Cost Model

- Developed for CUWCC/AWWARF
- Model Calculates
 - Short-run operating costs
 - Long-run avoided system expansion costs
 - Total Avoided Cost (SR + LR)
 - Peak and Off-Peak
- Available on CUWCC Website

Direct Utility Avoided Cost Model

- A spreadsheet planning tool
- The model is designed to be robust and defensible
- Model can handle many complexities

....estimates two avoided cost components, for each year and for peak/nonpeak periods:

- Short-run Avoided Costs. These are the costs that are immediately avoided due to the reduced water production that results from the conservation-induced demand reductions.
- Long-run Avoided Costs. Conservation-caused demand reductions also may allow the deferral and/or downsizing of planned supply or facility additions and expansions.

Common Assumptions Sheet

Common Assumptions	Estina			
Enter Common Assumptions:	1	Conservation Council		
Planning horizon (year)	Tables	2040	Discount Rate Converter	(Optional)
			IF:	parent annotes
Cost Reference Year		2005	Nominal Discount Rate is:	6.00%
			AND	
ost and Unaccounted for Water (%)			Projected Inflation Rate is	2.00%
		1 H	THEN	
Peak-Season Start Date ('xx/xx')		1-Jun	Real Discount Rate is	3.92%
Peak-Season End Date ('xx/xx')		31-Oct		
Real Discount Rate		3.92%		

Choose Units of Measurement

Units Displayed in Model

and the second
mg

Forecasted Demands

Sheet

Forecasted Demands									
Demand Data	Entry Units:	Flow							
	Seasona	Demand	Appual Dem	and Growth	Peak Season				
	Peak	Off-Peak	Peak-Season	Off-Peak Season	1 mgd				
					Deferral Periods				
Year	(mgd)	(mgd)	(mgd)	(mgd)	(years)				
			-	_					
2005	200.0	100.0	4.0	2.0	0.250				
2006	204.0	102.0	4.1	2.0	0.245				
2007	208.1	104.0	4.2	2.1	0.240				
2008	212.2	106.1	4.2	2.1	0.236				
2009	216.5	108.2	4.3	2.2	0.231				
2010	220.8	110.4	4.4	2.2	0.226				
2011	225.2	112.6	2.3	1.1	0.444				
2012	227.5	113.7	2.3	1.1	0.440				
2013	229.8	114.9	2.3	1.1	0.435				
2014	232.1	116.0	2.3	1.2	0.431				
2015	234.4	117.2	2.3	1.2	0.427				
2016	236.7	118.4	2.4	1.2	0.422				
2017	239.1	119.5	2.4	1.2	0.418				
2018	241.5	120.7	2.4	1.2	0.414				
2019	243.9	121.9	2.4	1.2	0.410				
2020	246.3	123.2	2.5	1.2	0.406				
2021	248.8	124.4	1.2	0.6	0.804				
2022	250.0	125.0	1.3	0.6	0.800				
2023	251.3	125.6	1.3	0.6	0.796				
2024	252.5	126.3	1.3	0.6	0.792				
2025	253.8	126.9	1.3	0.6	0.788				
2026	255.1	127.5	1.3	0.6	0.784				
2027	256.4	128.2	1.3	0.6	0.780				
2028	257.6	128.8	1.3	0.6	0.776				
2029	258.9	129.5	1.3	0.6	0.772				
2030	260.2	130.1	1.3	0.7	0.769				
2031	261.5	130.8	1.3	0.7	0.765				
2032	262.8	131.4	1.3	0.7	0.761				
2033	264.1	132.1	1.3	0.7	0.757				
2034	265.5	132.7	1.3	0.7	0.753				
2035	266.8	133.4	1.3	0.7	0.750				
2036	268.1	134.1	1.3	0.7	0.746				
2037	269.5	134.7	1.3	0.7	0.742				
2038	270.8	135.4	1.4	0.7	0.739				
2039	272.2	136.1	1.4	0.7	0.735				
2040	273.5	136.8	1.4	0.7	0.731				

Variable Operating Costs

Number of Components?		 	Variable Operating Costs							
Component Type	Component Name	Existing or Planned?	On-Line Year (for Planned)	Loss Rate	Ref. Year Power Costs	Ref. Year Chemical Costs	Ref. Year Purchase Costs	Ref. Year Other Costs	Ref. Year Revenues	
					(\$/mg)	(\$/mg)	(\$/mg)	(\$/mg)	(\$/mg)	
Su	Diversion A	0		5%	\$20				\$10	
Т	WTP A	.0			\$150	\$75				
Su	GW #1	p	2015	20%	\$100		2			
CP	Path Group 25	е			\$25					
CP	Path Group 50	P	2010		\$50					
-1			Annual Re Escalation	al Rates:	1.00%	0.00%	2.00%	0.00%	0.00%	

On Margin Probabilities

A system component is said to be 'on the margin' if its operations would be cut back in response to conservation-induced demand reductions.

		1				Lauren er	
			Diversion A	WTP A	GW #1	Path Group 25	Path Group 50
	o	n-line dates:			2015		2010
Year	Season	Tuna:	Cu.	T	C 11	CP	CP
	Peak	Type.	100%	100%	0%	20%	0%
2005	Off-Peak		100%	100%	0%	10%	0%
	Peak		70%	100%	0%	20%	30%
2010	Off-Peak		80%	100%	0%	10%	20%
0000	Peak		50%	100%	30%	30%	30%
2015	Off-Peak		80%	100%	10%	10%	20%
2020	Peak		40%	100%	30%	30%	25%
2020	Off-Peak		80%	100%	10%	10%	20%
0005	Peak		45%	100%	40%	40%	25%
2025	Off-Peak		85%	100%	10%	10%	15%
2020	Peak		55%	100%	40%	50%	20%
2050	Off-Peak		90%	100%	10%	10%	10%
2025	Peak		55%	100%	40%	50%	20%
2055	Off-Peak		90%	100%	10%	10%	10%
2040	Peak		55%	100%	40%	50%	20%
2040	Off-Peak	0	90%	100%	10%	10%	10%

Short-Run Avoided Costs

(\$/mg)

Seasonal by Component, at 5-Year Intervals, Loss-Adjusted to Meter and Escalated								
Year	Season	Power	Chemicals	Purchases	Other	Rev Unesc	Revenue	Total
2005	Peak	\$176.05	\$75.00	\$0.00	\$0.00	\$10.53	(\$10.53)	\$240.53
2005	Off-Peak	\$173.55	\$75.00	\$0.00	\$0.00	\$10.53	(\$10.53)	\$238.03
2010	Peak	\$194.16	\$75.00	\$0.00	\$0.00	\$7.37	(\$7.37)	\$261.79
2010	Off-Peak	\$188.49	\$75.00	\$0.00	\$0.00	\$8.42	(\$8.42)	\$255.07
2015	Peak	\$243.60	\$75.00	\$0.00	\$0.00	\$5.26	(\$5.26)	\$313.34
2015	Off-Peak	\$211.91	\$75.00	\$0.00	\$0.00	\$8.42	(\$8.42)	\$278.49
2020	Peak	\$250.68	\$75.00	\$0.00	\$0.00	\$4.21	(\$4.21)	\$321.47
2020	Off-Peak	\$222.72	\$75.00	\$0.00	\$0.00	\$8.42	(\$8.42)	\$289.30
2025	Peak	\$283.05	\$75.00	\$0.00	\$0.00	\$4.74	(\$4.74)	\$353.32
2025	Off-Peak	\$232.32	\$75.00	\$0.00	\$0.00	\$8.95	(\$8.95)	\$298.37
2030	Peak	\$300.19	\$75.00	\$0.00	\$0.00	\$5.79	(\$5.79)	\$369.40
2030	Off-Peak	\$242.31	\$75.00	\$0.00	\$0.00	\$9.47	(\$9.47)	\$307.84
2035	Peak	\$315.50	\$75.00	\$0.00	\$0.00	\$5.79	(\$5.79)	\$384.71
2035	Off-Peak	\$254.67	\$75.00	\$0.00	\$0.00	\$9.47	(\$9.47)	\$320.20
2040	Peak	\$331.60	\$75.00	\$0.00	\$0.00	\$5.79	(\$5.79)	\$400.81
2040	Off-Peak	\$267.66	\$75.00	\$0.00	\$0.00	\$9.47	(\$9.47)	\$333.19
2045	Peak	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2045	Off-Peak	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2050	Peak	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
2050	Off-Peak	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Annual Escalated Short-Run						
Avoided Costs by Season						
		Peak-	Off-Peak			
Year		Season	Season			
2005		\$240.53	\$238.03			
2006		\$244.78	\$241.43			
2007		\$249.03	\$244.84			
2008		\$253.29	\$248.25			
2009		\$257.54	\$251.66			
2010		\$261.79	\$255.07			
2011		\$272.10	\$259.75			
2012		\$282.41	\$264.44			
2013		\$292.72	\$269.12			
2014		\$303.03	\$273.81			
2015		\$313.34	\$278.49			
2016		\$314.96	\$280.65			
2017		\$316.59	\$282.82			
2018		\$318.21	\$284.98			
2019		\$319.84	\$287.14			
2020		\$321.47	\$289.30			
2021		\$327.84	\$291.12			

Long-run avoided costs

- Based on the degree to which each planned addition would be either *deferred* or *downsized* as a result of conservationinduced demand reductions.
- For each planned system addition, the user must indicate whether it would be deferred or downsized.

Flex Track Table Estimated Water Savings - GPD

			SF Pres. HET	SF Dual HET	MF Pres. HET
		GPD			
GPD		27.2	25.7	47.2	
SF Pres. HET	(1)	27.2	1.00	1.06	0.58
SF Dual HET	(1)	25.7	0.94	1.00	0.54
MF Pres. HET	(1)	47.2	1.74	1.84	1.00
MF Dual HET	(1)	44.9	1.65	1.75	0.95
CII HET	(5)	25.9	0.95	1.01	0.55
SF Low Flow Showerhead	(2)	5.5	0.20	0.21	0.12
MF Low Flow Showerhead	(2)	5.2	0.19	0.20	0.11
SF HEW	(3)	21.5	0.79	0.84	0.46
MF HEW	(3)	80.7	2.97	3.14	1.71
Low Flow Urinals .5 GPF	(4)	13.4	0.49	0.52	0.28
Low Flow Urinals .26 GPF	(4)	15.3	0.56	0.60	0.32
Waterless Urinals	(4)	17.9	0.66	0.69	0.38
Pre-Rinse Spray Valves - Large Food Service	(6)	500.0	18.38	19.46	10.59
Pre-Rinse Spray Valves - Small Food Service	(6)	200.0	7.35	7.78	4.24
Cooling Towers - Centrifugal, Helirotor	(7)	272.7	10.02	10.61	5.78
Cooling Towers - Absorption	(7)	273.1	10.04	10.62	5.79
Cooling Towers - WSHP	(7)	201.6	7.41	7.84	4.27
Cooling Towers - SCVAV	(7)	194.1	7.14	7.55	4.11
Steam Sterilizer - Jacket & Chamber Condensate	(8)	1248.1	45.88	48.56	26.44
Steam Sterilizer - Ejector Water	(8)	1498.0	55.07	58.29	31.74

BMP Implementation with FlexTrack

New CEA Tool

- Appropriate for target planning with added benefit of support for basic conservation program budget planning
- Performs a basic benefit cost analysis MS Excel spreadsheet tool to estimate a "return on investment"
- Tool has the ability to seek the lowest cost measures to implement for the most water savings.
- Includes the capability to input environmental benefits
- Summarizes results across multiple measures

DSS Model

- Planning approach where there are water scarcity issues and/or medium to large conservation program budget planning needs (e.g., annual budgets of >\$500k)
- More sophisticated modeling system in MS Excel with more refined water savings estimates
- Ability to do historical water use analysis, demand forecasting and conservation measure/program evaluation
- All conservation measures designed from a template worksheet that is completely customizable
- Includes scenario planning where multiple "packages" of conservation measures can be compared holistically

Practical Plumbing HANDBOOK

Includes important water-saving tips Revised 2010