This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Demand and Weather

Implications of Climate Change and Water Efficiency

Jack C. Kiefer, Ph.D. John M. Clayton, Ph.D., P.E.

Overview

- Describe WaterRF Project 4263
- Compare and contrast regional water use patterns
- Provide example for evaluating weather and climate impacts on water use
- Provoke thoughts on alternative water futures
 - Climate change impacts
 - Water efficiency

WaterRF Project 4263

- Analysis of Changes in Water Use Under Regional Climate Change Scenarios
 - 1. Develop and demonstrate demand modeling/prediction methodologies
 - 2. Compile regionally downscaled climate projections
 - 3. Identify and quantify potential climate change impacts
 - 4. Evaluate demand-side planning and policy options

General Study Approach

Regional Muncipality of Durham, Ontario Total Monthly Plant Flows 2004-2010 (MGD)

Year-Month

Regional Muncipality of Durham, Ontario Total Monthly Plant Flows 2004-2010 (MGD) 80 70 60 50 MGD 40 Avg. Maximum Daily Temperature 30 20 10 0 Mar-05 May-05 Sep-05 Nov-05 Mar-06 May-06 Sep-06 Nov-06 Mar-08 May-08 Sep-08 Nov-08 Jan-09 Mar-09 Sep-09 Nov-09 Jan-10 Mar-10 May-10 Mar-04 May-04 Nov-04 Jan-05 Jan-06 Mar-07 Sep-07 Nov-07 Jan-08 90-Inf May-09 Jul-10 Jan-04 Jul-04 Sep-04 Jul-05 Jul-06 Jan-07 May-07 70-lut 60-Inf Sep-10

Year-Month

Year-Month

Colorado Springs Utilities Daily Water Production and Weather

Colorado Springs Utilities Daily Water Production and Weather

Seasonality in Different Water Use Sectors (Southern Nevada)

Lawn Irrigation

Swimming Pools

Cooling

Other

Tampa Bay Water Single Family Avg Gallons per Day per Account

----- Tampa Bay Water Average Monthly GPUD

Tampa Bay Water Single Family Avg Gallons per Day per Account

---- Tampa Bay Water Average Monthly GPUD

Southern Nevada

Estimated Average Single-Family Water Use per Capita for Selected Regions

Measuring Response to Weather

- Several different measures/specifications of weather and climate
 - Temperature
 - Precipitation
 - ET₀
 - Precipitation event thresholds
 - Spells
 - Dry/wet
 - Hot/cool
 - Treatment of systematic seasonal effects
 - Departures from "normal"

Measuring Response to Weather

- Several statistical estimation methods
 - Generally involves regression analysis
 - Choice of technique depends on both technical and practical factors
 - Amount of available data
 - Dimensions of available data (e.g., time-series, spatial, cross-sectional)
 - Amount of time to invest in complexities of statistical inference and forecasting

Example Sector Long-Term Planning Model

Parameter Estimates						
Variable	Estimate	Sta	andard Error	t Value	Pr > t	
Intercept	-7.60602		0.6297	-12.08	<.0001	
In (normal avg. daily maximum temperature)	1.87741		0.1067	17.59	<.0001	
In (avg. maximum daily temperature) - In (normal avg.						
daily maximum temperature)	0.87102		0.1252	6.96	<.0001	
1-month lag of {In (avg. maximum daily temperature) -			Weather Component			
In (normal avg. daily maximum temperature)}	0.63362		0.1272	4.98	<.0001	
In (normal total precipitation + 1)	-0.28773		0.0226	-12.71	<.0001	
In (total precipitation + 1) - In (normal total						
precipitation + 1)	-0.06350		0.0076	-8.4	<.0001	
1-month lag of {In (total precipitation + 1) - In (normal						
total precipitation + 1)}	-0.05023		0.0074	-6.82	<.0001	
2-month lag of {In (total precipitation + 1) - In (normal						
total precipitation + 1}}	-0.02011		0.0069	-2.93	0.0035	
In (average household income)	0.55467		0.0253	21.88	<.0001	
In (number of single-family units per developed single-						
family acre)	-0.33820	S	Socioeconomic Component			
In (inflation adjusted marginal price of water)	-0.39627	0.000 -7.40 - 0.0001				
In (average persons per household)	0.30809		0.1034	2.98	0.003	
In (number of occupied single-family units per single-						
family account)	0.13775		0.0487	2.83	0.0048	

Example of Estimating Climate Change Impact on Demand

- Use weather component of model
- Downscale climate projections
- Substitute new climate/weather into model
- Compare with "baseline"
 - Relative to historical normal climate
 - Relative to "without climate change" socioeconomic futures
- Evaluate change in predicted water use

Notes on Example

- Single sector (SF)
- Illustrative purposes only
 - Based on actual predictive demand model and projections of future climate
 - Limited number of GCM's used
 - Liberal use of climate projection traces out to 2099

More work to be done

- Conceptual framework
- Demand modeling approaches
- Process for interpreting and screening downscaled data

Process

Example of Estimating Climate Change Impact on Demand

Change in projected 2035 annual water use given

- 2035 projection of weather/climate
- 2050 projection of weather/climate
- 2099 projection of weather/climate

	Single Family Percent Difference from Baseline										
	Emissions Scenario 1			Emiss	sions Scen						
Reference Year	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	Mean	Median			
2035 Weather	1.7%	0.5%	1.8%	-1.1%	6.1%	2.4%	1.9%	1.8%			
2050 Weather	3.0%	6.5%	6.3%	4.4%	9.9%	0.9%	5.2%	5.4%			
2099 Weather	-0.8%	4.3%	6.9%	4.3%	14.2%	13.5%	7.1%	5.6%			

- Hides monthly trends
- Does not incorporate variability over climate traces

Distributions of August Average Maximum Daily Temperature

Distributions of March Precipitation

Example Ensemble of Potential Monthly Demand Impacts

Important Points

- Its probably going to get warmer
- It may get dryer
- It may get wetter
- Seasonal trends may be amplified
- Seasonal trend may be altered
 - Impacts on demand are uncertain and projections are variable

Regional-Scale Vulnerabilities

- Climate change will likely exacerbate <u>existing</u> demand pressures in some regions and municipal systems that have
 - High rates of population growth
 - Competition for sources of water supply
 - Municipal
 - Agriculture
 - Power
 - Ecological
 - Heavy reliance on surface water sources
- Some water resources "hot spots" are going to get "hotter"...

Important Open Questions/Issues about Role of Efficiency

- Can investments in water efficiency reduce potential risks?
- Can increasing efficiency in indoor plumbing mitigate potential climate change impacts as an alternative source of supply?
 - Some initial simulations suggest so on <u>annual</u> <u>average basis</u>
 - Variability in initial annual and monthly projections cause concern

Important Open Questions/Issues about Role of Efficiency

- Increases in outdoor use may be projected in some places under "current" circumstances
- There may be additional future societal benefits from increasing outdoor plantings
- Cooling with water may become more cost-effective
- Can irrigation and cooling efficiency measures offset potentially more outdoor and cooling uses of water?
- Can "surplus" irrigation be reduced without inducing more irrigation from deficit irrigators?

Important Open Questions/Issues about Role of Efficiency

- Does uncertainty and potential for increased weather variability focus more attention on curtailment potential than long-term efficiency?
- Restrict demand when you need to?
- Preserve a "soft demand" buffer?
- More of a supply/operational perspective
- Implications for servicing demands

Indirect Adaptations?

Increasing development density would generally decrease water use in residential sectors

Example of changes in development patterns

- Assume elasticity with respect to housing density (units per acre) = -0.33
- Current density = 1 acre lots
- Future scenario = 2 units per acre
- Estimated reduction in water use = -20%

Indirect Adaptations?

- Increasing cost of water and higher prices may lead to reductions in long-term water use
 - Example of higher prices
 - Assume elasticity with respect to inflation-adjusted volumetric prices = -0.40
 - Assume marginal prices increase by 50%
 - Estimated reduction in water use = -15%

Summary and Conclusions

- Understanding demand-side impacts of climate change and adaptation opportunities is important
 - Fundamental mission of "on demand" delivery of water
 - Predictions of future (unrestricted) demand drive investment decisions
 - Scenario planning requires consistent and simultaneous analysis of supply and demand

Summary and Conclusions

- Weather and climate-sensitive water uses are a sizeable component of water demands in most urban systems
- Understanding demand response to weather and climate is fundamental to climate change evaluation
- There is certainly a role for water efficiency adaptations but uncertainty makes planning complex
- Indirect utility adaptations and market/economic signals could mitigate (or exaggerate) climate change impacts
- More research is needed on climate-induced drought and potential characteristics of future droughts

Thank you

Questions?

Jack C. Kiefer, Ph.D. jkiefer@hazenandsawyer.com (618) 889-0498

John M, Clayton, Ph.D., P.E. jclayton@hazenandsawyer.com (678) 244-6737

