This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

HydroPoint Data Systems

National Evapotranspiration Data For Water Agencies

The proven leader in smart water management.

The era of abundant water supplies is over

As Scarcity Increases Intelligent Resource Analysis Is Critical

The proven leader in smart water management.

Evapotranspiration Data: ET Powerful Tool For Water Planning

What is ET

- Evapotranspiration
 - Originally developed to determine agricultural water demand

• Why Use ET?

- Primary driver for water need
- Allows for depletion irrigation which conserves water while improving plant health

evapotranspiration = transpiration + evaporation

How Agencies & Corporations Use ET Data

- Short and long-term strategic and system planning
- Water demand calculations for developers / builders
- Agricultural crop and landscape water demand calculations
- Weather based irrigation controllers daily irrigation
- Water budget billing systems calculations
 - (# of residents) (gpcd) + (ET) (Landscape factor) (Daily ET) = Water Budget

Determining ET Not All ET's Are Created Equal

Determining ET – Main approaches

- Lysimeter
 - Most accurate measuring device
 - Expensive and problematic outside of a laboratory

- ASCE Penman-Monteith (4 parameters)

- Accepted as international standard
- Calculation using at least 4 weather parameters
 - Temperature, Solar Radiation, Wind, Humidity
- Highest quality calculated ET
 - within 1% of Lysimeter
- Hargreaves (1 parameter)
 - Temperature only
 - Inaccurate as much as 300% due to lack of key ET weather drivers

Lysimeter

I ne proven leader in smart water management.

ET Weather Stations in US

Key Issues with ET Measurement: Weather Variation Even Across Short Distances

The proven leader in smart water management.

Key Issues with ET Measurement: Weather Variation Even Across Short Distances

Key Issues with ET Measurement: Weather Variation Even Across Short Distances

Need validation even with a Weather Station: Weather Station Data Can Be Incorrect

Even best of breed sources have issues relying on sensors alone.

Example: Solar radiation sensor reported 0 solar radiation mid-day, which is impossible.

Misrepresenting ET for locations as much as 50% too low.

ISSUE: Dependent on single source

Key Requirement

Independent validation

Pomona - Los Angeles Basin - Station 78

Date	ate Hour Sol Rad Net (Ly/day) Rad (Ly/da		Net Rad (Ly/day)	Air Temp (°F)	Wind Speed (MPH)	ETo (in)	Rel Hum (%)	Dew Point (°F)	PM ETo (in)	
9/20/2009	0100	2	-130	65.2	2.4	0.00	89	61.8	0.00	
	0200	5	-130	64.1	2.7	0.00	91	61.3	0.00	
	0300	6	-131	62.8	1.6	0.00	92	60.3	0.00	
	0400	5	-131	62.2	2.4	0.00	92	60.0	0.00	
	0500	5	-131	62.0	2.2	0.00	93	60.0	0.00	
	0600	12	-121	63.2	2.0	0.00	94	61.3	0.00	
	<mark>0700</mark>	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	M	
	<mark>0800</mark>	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	M	M	
	<mark>0900</mark>	M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	
	<mark>1000</mark>	M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	M	<mark></mark> M	
	<mark>1100</mark>	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	
	<mark>1200</mark>	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	<mark></mark> M	
	1300	1534	921	86.0	6.5	0.02	41	59.2	0.02	
	1400	1385	814	87.3	7.1	0.02	38	58.9	0.02	
	1500	1130	637	86.8	7.4	0.02	40	59.7	0.02	

'Onsite' Weather Stations Issues

Quality

- Quality can be comprised due to improper maintenance, sensor failure
 - HydroPoint independently verifies all data by multiple methods, from all agencies/sources thus insuring that the best available data is used.

HydroPoint's: WeatherTRAK Climate Center ET Everywhere

- ET Everywhere uses proven energy based modeling techniques, to calculate weather parameters for entire US and southern Canada
- ET Everywhere uses Weather Research Forecast (WRF) as basis for modeling calculations
 - HydroPoint has made proprietary modifications to optimize WRF model for precision hourly ET calculations
- Patented and proven accurate to 2% over a 1 year period

HydroPoint WeatherTRAK Climate Center What We Do

What we do

- Providing hourly Penman-Monteith ET values for North America & Hawaii
 - Calculated over 60 billion ET values
 - 16 Million ET values calculated daily

How we do it

- Data Gathering
 - Over 8 million data points daily from over 40,000 weather data sources
 - Weather Stations, Radar Stations, Radiosonde, Vertical Atmosphere Profilers, River Gauges, Ocean Buoy Stations, Aircraft Data, Satellites
- Data Verification
 - Quality filtering and climatologist validation
- Data Modeling
 - Physics based balanced weather calculation
 - Incorporates over 256 localization categories, topography, surface information
- Modeled Data Validation & correction
 - Post calculation verification and correction

Climate Center

Weather Stations Used by WeatherTRAK

The proven leader in smart water management.

1 Year Comparison: ET Everywhere vs. CIMIS Station

The proven leader in smart water management.

Colorado Weather Station versus ETE comparison

WeatherTRAK ETE Each Square is 1 microzone - ET Values in blue Cimis Station(s) in RED

									8)					
0.18	0.19	0.20	0.20	0.21	0.21	0.21 ₅	0.22	0.22	0.22	0.22	0.21	0.21	0.21	-0.21	0.21	0.20	0.20	0.19
0.18	0.12	0.20	0.21	0.21	0.21	0.22	0.22	0.22	0.22	0.22	0.22	0.21	0.21	0.21	0.21	B-20	0.20	0.19
0,18	0.19	0.20	021	0,21	0,21	8,22	0,22	0.22	0.2	0.22	0.22	0.21	8,21	0.21	0.21	0.20 Point	San F	0,19 edro
0,18	0.19	0.20	0.21	lairfa 0.21	0.72	0.22	0.22	0.22	0.22	p.o	0.22	0.21	0,21	0,21	0.21	0.21	0.20	d .19
0.18	0.19	0.20	6.21	0.21	0.22	0.72		et.10	10:22		0.22	0.21	8.21	0.21	9:21	0.20	0.20	0.19
in h7	0.18	0.20	0.21	0.21	0.22	0.22	8-286	0.23	0.2	0.22	Sel.	0.21	0.21	0.21	0.21	0.20	0.20	0.19
50.16	0.18	0.19	0.21	0.21	0.21	0.22	0.22	0.23	0.22	0.22	0.22	0.21	0.21	0.21	0.20	0.20	0.20	0.19
0.16	0.17	0.18	0.19	0.20	0.20	0.26	0.22	0.22	0.22	232			8:21	-	0.20	0.20	0.20	0.19
0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.22	opter	C.0112	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.19
0,14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	-22	0.00	0.5ert	anged a	0.21	12.21	0.20	0.20	0.20	0.20	0.19
0.14	0.15	0.16	0.16	0.12	0.18	8.19	0.21	0.22	0.21	0.21	0.20	0.20	0.20	0.20	0.10	0.20	0.20	0.19
8.13	0.14	8.16	0.15	0.16	0.17	1.18	8.20	0.20		0,30	040	0.20	8.20	0.20	20.16	0.19	0.20	0.20
0.12	0.13	0.14	0.14	0.15	0.16	1.37	0.18	0.19	279	0.10	019	10.10	122	6.19	0.19	0.19	8.19	0.19
8.1R	0.12	0.13	0.14	0.14	0.15	8.16	0.4	0.18	P.18	0.78	d'IB:	ALS.	8.17	0.17	0.10	0.19	0.19	0.13
8.10	0.12	0.13	0.T4	0.14	0.14	0.15	0.16	0.17	0.17	0.17	0.17	10×	0.16	0.16	0.16	0.14	- Carter	10.19
				6		8										54		A.

The proven leader in smart water management.

HydroPoint Precision Weather Intelligence Applications Summary

Agency based billing

- Provide agencies with daily ET data used to determine customer water allocation for tiered rate structure
- Short and Long Term Strategic Water Demand and Use Planning
 - Report providing weather variation for a given region (such as a water agency)
- Site Specific Measurement & Verification
 - Weather normalized site specific comparison data for measurement and verification
- Rain Water Harvesting Analysis
 - Report providing historical water demand and supply utilized to determine Rain Water Harvesting tank sizing and RHW ROI
- Water Demand and Weather Data for Environmental Impact Report (EIR)
 - Report providing water requirements for specific region
- Weather Event Reporting Services
 - Snow Service
 - Historical Seasonal Trend

HydroPoint's WeatherTRAK ET Everywhere High Resolution Site Specific Weather Intelligence

- National coverage, every hour, every day
- Constant validation
- Fraction of the cost of setting up and maintaining your own mesonet
- Patented, proven, most accurate weather intelligence available

Thank you for your time!

Christopher Spain Chief Strategy Officer, Chairman HydroPoint Data Systems, Inc cspain@hydropoint.com (707) 285 3260 www.hydropoint.com

The proven leader in smart water management.