This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Water Water Water

Strategic Water Loss Reduction

So, what's the issue?

Water Loss

Or

Inability to calculate

Both

Issue – Water Loss

Water Loss

Lost Revenue

Lost Resource

Issue – Inability to Calculate

Two Levels of Concern

State Level

- Collective water loss can be significant, or maybe not
- If Water losses addressed
 - Need for new/expanded source may be deferred or eliminated
 - Cost of compliance may be reduced

- Water System
 - Cost of pumping & treating unbilled/lost water
 - Reduction of water resource
 - New source infrastructure required too soon
- If Water losses addressed
 - Reduce overtime & emergency repairs
 - Improve public relations
 - Reduce property damage

Water Water

So... Where do we start?

Determine the Nature and Extent of the Problem

Step 1: Water Audit – AWWA Method

System	Authorized Consumption	Billed Authorized Consumption	Billed Metered Consumption	Revenue Water
			Billed Unmetered Consumption	
		Unbilled Authorized Consumption	Unbilled Metered Consumption	Non- Revenue Water
			Unbilled Unmetered Consumption	
Input Volume	Water Losses	Apparent Losses	Unauthorized Consumption	
			Customer Meter Inaccuracies	
		Real Losses	Leakage in Transmission & Distribution Mains	
			Leakage at Overflows and Reservoirs	
			Leakage on Service Connections up to Metering Point	

High Unbilled Authorized Consumption

System Input Volume	Authorized Consumption	Billed Authorized Consumption	Billed Metered Consumption	Revenue Water
			Billed Unmetered Consumption	
		Unbilled Authorized Consumption	Unbilled Metered Consumption	Non- Revenue Water
			Unbilled Unmetered Consumption	
	Water Losses	Apparent Losses	Unauthorized Consumption	
			Customer Meter Inaccuracies	
		Real Losses	Leakage in Transmission & Distribution Mains	
			Leakage at Overflows and Reservoirs	
			Leakage on Service Connections up to Metering Point	

High Unbilled Authorized Consumption

- Not Water Losses
- Lost revenue due to subsidization of user classes
- May be metered or not
- Examples
 - Governmental uses: schools, parks, open space, fire
 - Low income; fixed income; elderly
- If this use is high, biggest issue is equitability
 - Is it fair for users to be subsidized? Is it transparent?
 - Should unmetered use be metered?
 - Users in this category should get a statement describing how much service they receive

High Apparent Losses

System	Authorized Consumption	Billed Authorized Consumption	Billed Metered Consumption	Revenue Water
			Billed Unmetered Consumption	
		Unbilled Authorized Consumption	Unbilled Metered Consumption	Non- Revenue Water
			Unbilled Unmetered Consumption	
Input Volume	Water Losses	Apparent Losses	Unauthorized Consumption	
			Customer Meter Inaccuracies	
		Real Losses	Leakage in Transmission & Distribution Mains	
			Leakage at Overflows and Reservoirs	
			Leakage on Service Connections up to Metering Point	

High Apparent Losses

- Not actually losing water!!!!!
- Represents revenue lost to the system
 - User(s) not paying for water they use
- Two sources
 - Illegal use of water; illegal hook-ups
 - Meter inaccuracies
 - Meters typically fail low
- If this portion of the water balance is high insufficient revenues

High Real Losses

System Input Volume	Authorized Consumption	Billed Authorized Consumption	Billed Metered Consumption	Revenue Water
			Billed Unmetered Consumption	
		Unbilled	Unbilled Metered Consumption	
		Consumption	Unbilled Unmetered Consumption	Non-
	Water Losses	Apparent Losses	Unauthorized Consumption	
			Customer Meter Inaccuracies	
			Leakage in Transmission & Distribution Mains	Water
		Real	Leakage at Overflows and Reservoirs	
		Losses	Leakage on Service Connections up to Metering Point	

High Real Losses

- These factors represent water that is lost from the system
 - Water has been pumped from source, but never reaches customers/users
- Three sources
 - Pipe leakage
 - Reservoir leaks and overflows
 - Leakage on service connections (prior to meter)
- If this portion of the water balance is high losing water resources

Step 2: Is there a problem & how big is it?

Step 3: Devise a Strategy

Work on the most significant problem first

> If 70% of the problem is apparent losses and 30% is leaks – spend your money on apparent losses

Money should be spent where it will have the most impact

What are your goals?

Set goals for revenue increase and water loss reduction

- To obtain the maximum revenue possible?
- To achieve the lowest water loss possible?
- To prevent catastrophic failures?
- To address high priority/high risk assets?
- Reduce repair peaks (either summer or winter)

Goals define the program & strategy

Step 4: Real Water Loss

Let's assume that the issue is Real Water Loss

Real Losses

- Can we save all of the losses that are considered "real losses"
 - No
 - Why not?
 - Some losses are considered "unavoidable real losses"
 - Some losses are considered uneconomical to address

More on Real Losses

Real Loss reduction is only looking for the "Potentially Recoverable Real Losses" portion. If this portion is not significant to the system, stop here

Methods to Address Real Losses

- Pressure Management
- Active Leakage Control
- Speed and Quality of Repairs
- Pipeline Asset Management

Only going to address 2 of these: Active Leakage Control and Speed and Quality of Repairs

Real Loss Control

Active Leakage Control

- Major activity Leak detection
 - One size does not fit all
 - Amount and type of leak detection should fit system, resources, personnel, and goals
 - Leak detection is not all or nothing; can do a little or a lot
 - Can be passive or active
 - Frequency will determine how soon leaks are found

Speed & Quality of Repairs

- Finding leaks by itself does not save one drop of water
- Pipe repair or replacement saves water
- The sooner the leak is repaired the sooner the water loss will stop and the more water that will be saved
- If insufficient resources to fix leaks, don't look for them
- Only do as much detection as ability to do repair

Two Methods for Leak Detection

- Passive & Active
 - Passive Leak Detection
 - Deployment of noise data loggers to listen for "noise" on main water lines
 - Active Leak Detection
 - Deployment of a survey crew with listening devices (microphones) to actively listen to hydrants, valves and meters
 - Can be used together
- Purpose of Leak Detection is to find leaks sooner – before they become visible or catastrophic

Water

Examples

EFC/ABCWUA Activities

- Several Beta Tests
 - Head to Head: Active vs. Passive
 - Head to Head: Passive Devices

- Fixed Based Metering w/ Automatic Leak
 Detection
- Pipe Break Data Review: 15 years of data
- Different deployment methods for Passive Devices
- Hydrant Survey: 14,000 hydrants

Findings

- Devices don't replace humans
- Devices don't detect hydrant, meter, service, or house-side leaks well
- Jury's still out on smaller main leaks
- Time savings????
- Valve placement & pipe type are key factors
- Ease of use important
- Cost full deployment \$\$
- Time consuming
- Need trained staff
 Wat er Efficiency

Findings

- Pipe break data
 - Approx. 50% of all breaks from 5% of the system (steel water lines)
- Over time, summer peaks dampened
- Trend steel breaks decreasing as steel replaced by PVC
- Commitment is key
 - No repair, no water loss reduction

Results of Investigating 4 Communities for ELL

- Survey the entire system for leaks
- Could be passive or active
- Looked at potential cost effectiveness of doing a complete survey or more
- One survey will not find all leaks

ELL: Save water at a rate you can afford

Results of ELL Study

- In concept, ELL is great idea
- In practical terms, it can be difficult to apply

4 Communities ELL

Economical in two cases, questionable economics in 1 case, should address unavoidable losses in last case

Findings

- ELL helps formulate the role of leak management strategies in reducing real losses
- Helps to select a leak detection strategy that does not cost significantly more than the lost water is worth
- If water is cheap, hard for the value of water saved to exceed the cost of leak detection
- Water supply savings may be better argument than ELL or maybe add "intrinsic" value to cost of water to change economic outcome
- Good data = good decisions

Water Water Water Water

A Few Cautionary Words

A Word of Caution

- Watch out for unrealistic claims of water savings
 - Lots of room for fudging the numbers
- Example
 - One company claimed to have found 60% of a system's total water loss in surveying less than 10% of the system (a random 10%)

A Word of Caution

Over Time

A program may state it can find leaks early before they are a problem

OR

The program may save high volumes of water

Watch out for claims of both

However either is a good thing!!!!

Summary

- Make sure you understand your problem!!
- Setting goals and measuring progress towards meeting those goals is critical
- Make sure the program you select fits your staff, capabilities, and budget
- Make sure you can fix the leaks or don't bother finding them
- Make sure that the economics makes sense OR that the value of the water supply is important enough to outweigh the economics

Water Water Water Water

Questions? Comments?

Contact Info

Presented by: Heather Himmelberger, P.E. Director, NM EFC October 7, 2010

2445 Alamo SE Albuquerque, NM 87106 505-924-7028 heatherh@efc.nmt.edu http://nmefc.nmt.edu

NEW MEXICO ENVIRONMENTAL FINANCE CENTER

