This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Implications of the Systematic Integration of Water Efficient Technology

Jack C. Kiefer, Ph.D., Hazen and Sawyer, P.C.

Adam Q. Miller, Phoenix Water Services

Overview

- Provide background on overall trends in water use in Phoenix
- Review identified drivers of demand trends
- Provide estimates of penetration of technology and other behaviors related to demand reductions
- Summarize implications for longer-term planning

Historical Trends in Accounts, Consumption and Wastewater Generation

Historic Trends in Household Water Use 1996-2010

Average Daily Water Use per Single Family Account

Recent and Future Demand Trends

- What is happening among older
- nat is our current outdoordevices
- Larger homes on lots
- per Account Lesser area for in plantings and sw Avg pools
- High vacancy rat
- Reduction in disc consumption
- Likely reduced commercial Higher Prices/Costs and industrial productivity

Market Forces and **Preferences**

Single-Family Field and End Use Surveys

- Two-pronged approach for further evaluation of trends in single-family water use
 - Field Survey: site inspections of water using technology and landscape characteristics
 - <u>Data Logging</u>: Re-logging of homes that participated in the Residential End Uses of Water Study (1999)— AquaCraft Inc.

Single-Family Field Survey

Selected stratified random samples from 7 age of construction cohorts

- Mail invitation
- Telephone follow-up and appointments
- Site visits averaging
 - ~ 1 hour

Sample Cohorts

- Pre-1955
- ∎ 1955 ≤ x ≤ 1964
- 1965 ≤ x ≤ 1974
- 1975 ≤ x ≤ 1984
- 1985 ≤ x ≤ 1994
- 1995 ≤ x ≤ 2004
- Post-2004

Breakdown of Sample by Age Cohort

	Number of	Total	Cumulative	Cumulative
Year of Construction	Homes	Sample	Frequency	Percent
<=1954	79	15.49	79	15.49
1955<=x<=1964	81	15.88	160	31.37
1965<=x<=1974	72	14.12	232	45.49
1975<=x<=1984	76	14.90	308	60.39
1985<=x<=1994	80	15.69	388	76.08
1995<=x<=2004	61	11.96	449	88.04
>=2005	61	11.96	510	100.00

Presence of ULF Toilets

Presence of ULF Showerheads

Presence of High Efficiency Clothes Washers

Presence of High Efficiency Dishwashers

Presence of Turf Grass

Integration of Rock/Mulch

Presence of Irrigation Timers

Presence of Swimming Pools

Presence of Evaporative Coolers

Baseline Summary

Percentage of Total Sample Having End Use or Feature

End Use or Feature	Percent Presence	
Low Flow Showerheads (<=2.5 gpm)	8 8 .7	
Low Flow Toilets (<=1.6 gpf)	74.2	
Low Flow Faucets (<=2.2 gpm)	58.3	
HET Clothes Washers	22.9	
HET Dishwashers	22.3	
Turf Grass	70.0	
Irrigation Timer	56.6	
Rock/Mulch	52.7	
Swimming Pools	34.1	
Evaporative Coolers	16.5	

Estimate and Comparison of Flows								
Dovico	Number of	Average Rated Flow		Federal	HET			
Device	Devices	(gpi or gpin)		Stanuaru	Stanuaru			
Toilets	1,161		1.96	1.60	1.28			
Shower								
Heads	1,064		2.46	2.50	2.00			
Bathroom								
Faucets	2,040		2.24	2.20	1.50			

Significant capacity for additional efficiency under existing technology

Considerably more potential with more efficient standards

Data Re-Logging of Homes

- 89 of 99 single-family meters logged in 1997 as part of Residential End Uses of Water Study still active
- Homes re-logged by AquaCraft Inc. for a single 2-week period
- Objective: evaluate trend in indoor efficiency
- Decrease in average household use of about 20 gallons per day from 1997 to 2009
- Evaluation of end uses event characteristics revealing

Decrease in Average Flush Volumes

Decrease in Gallons per Load of Laundry

Gallons per Load of Laundry

Relative Frequency

Proportion of Efficient End Uses or Events

Previous operating assumption:

Water demand & wastewater generation would increase steadily with population growth.

What we are learning:

Water demand and wastewater generation has been relatively flat despite significant population growth.

Previous operating assumption:

Water demand from existing homes & businesses would be stable without intervention.

What we are learning:

Low-flow technology is systematically integrated in older housing stock and commercial properties.

Prospective Future

- New development will be more efficient than base
- Older housing stock and businesses will improve efficiency for decades
- Rate increases and cultural trends will continue influencing low-water landscaping
- Rate revenue will fall unless rates are increased, and when rates are increased, demand may drop further
- Large distribution (and collection) networks will deliver smaller volumes

Implications for Planning

- Continue to monitor and adapt
- Revise demand forecast and supply acquisition outlook
- Emphasize shortage planning
- Address long-term revenue impacts and pricing strategies
- Revise engineering standards to reflect lower flows
- Evaluate operational consequences of lower flows

On-Going and Future Demand Analyses

- Multifamily field survey underway
- Expand data-logging for new homes
- Evaluate advanced interval-metering technology
- Conduct nonresidential field surveys
- Examine role of water pricing on rates of adoption for water efficiency
- Perform wastewater flow metering for different types of land-use

THANK YOU

Jack C. Kiefer, Ph.D., Hazen and Sawyer, P.C. jkiefer@hazenandsawyer.com (618) 889-0498

Adam Q. Miller, Phoenix Water Services adam.miller@phoenix.gov (602) 262-4575