This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Overview

- Scope
- Background
- Why a different approach is needed
- Suggested parameters
- Why it matters
- Examples
- Conclusion

Background

- immense public pressure
- need to diversify supplies
- significant scope
- capture water where it rains and where people live – rather than where the dams are (but no rain)

Another great opportunity goes down the drain

Biggest loser ... stormwater gushes out of a pipe at Balmoral Beach yesterday

Setting the Scene

- Australia is in the midst of the worst drought on record
- Dam levels were/are at all time lows for most major centres
- In response, severe water restrictions everywhere
- lamenting "driest continent" yet Australia is not dry!
- high affinity with rainwater tanks urban population responds
- commercial rainwater harvesting

Typical rain distribution for a sample event in Australia

Key: Acceptable Possible (Not recomm	nended 🕖	Not applicable
	Domestic (rainwater)	Comn Rainwater (from roof only)	nercial Stormwater (roof and ground)
Amenities/ Bathroom			\bigcirc
Kitchen/Food Prep.			\bigcirc
Hot Water System			\bigcirc
Toilet flushing			
Laundry			
Irrigation/Garden			
Vehicle/Gear Washing			
Cooling Tower			
Pool Top Up Water			\bigcirc
Other Process Water			

Fit for purpose reuse matrix

Cost Effective Design - Water is still cheap

Economic Value of Rainwater Harvesting							
Location	Annual Rainfall* mm or inch	Cost of Water and Sewerage per A\$/kL or US\$1,000/gal	Value/1,000m2 or ft2 roof area	Comment			
Sydney - Coastal	1,200 47	\$3.15 \$9.57	\$2,600 \$193				
Sydney - West	900 35	\$3.15 \$9.57	\$2,000 \$149				
Melbourne - City	650 26	\$2.70 \$8.20	\$1,200 \$89				
Melbourne - South East	750 30	\$2.55 \$7.75	\$1,400 \$104				
Adelaide	500 20	\$1.90 \$5.78	\$700 \$52	no variable wastewater charges			
Perth	800 31	\$3.30 \$10.02	\$1,900 \$141	lower yield because of seasonal rainfall (none to			
Darwin	1,700 67	\$0.90 \$2.74	\$1,100 \$82				
Brisbane	1,100 43	\$1.45 \$4.41	\$1,100 \$82	no variable wastewater charges			
*rounded numbers are used to	avoid a perceived false acc	curacy due to the high loc	al variability of rainfall				

Cost Effective Design

How to overcome the design challenge

- rain! ideally spread throughout the year
- build a tank not a dam
- intercept only what's needed
- make it part of an integrated urban water supply
- find a high non potable demand
- choose the right combination: Collection area, intercept, tank location, size, demand, reticulation)
- look for clever design solutions
- value engineer cut the right corners, for example:

Value Engineering – no 1st flush

Darling Harbour Carpark Rainwater Tank Water Quality Assessments

Item	Unit	Limit of Reporting	No. Samples	Min	Max	Avg	Reference Guidelines	CI ⁻ 12
рН	pH units	0.04	3	6.7	6.8	6.8	6.5-8.5	
Conductivity	uS/cm	10	3	63	180	109	250	
Chloride	mg/L	14	3	7.7	18	12	250	
Hardness	mg/L CaCO ₂	7	3	17	58	33 -	200	
Turbidity	NTU	0.07	3	1.8	33	13	5	
and the second s	The state	24	STRAN.	No. 15	Contraction of the	Nº SARDA	and the second s	
Nutrients		Contraction of the second		1.	11 march		Lines Print	
Nitrate Nitrogen	mg/L	0.02	2	0.12	1.2	0.7	50	
Total Nitrogen	mg/L	0.01	1_	2.2	2.2	2.2		
Phosphorous	mg/L	0.01	3	0.01	0.07	0.03		
and the second				1.000	200	A Star		TN 2 2
Metals			and the	A COL	The state			1 IN 2.2
Aluminium	mg/L	0.01	3	0	0.05	0.04	0.2	
Arsenic	mg/L	0.05	6	<.05	<.05	<.05	0.007	
Copper	mg/L	0.01	6	0.01	0.48	0.09	1	
Lead	mg/L	0.03	6	< 0.03	< 0.03	< 0.03	0.01	
						LE BALLAR		
Organics				10	10	10	N DE	
TPH C6-C9	ug/L	10	3	<10	<10	<10		
Benzene	ug/L		3	<1	<1	<1	1	
loluene	ug/L	1	3	<1	<1	<1	25	

Sizing Tools

RainHarD & StormHarD – rainwater and stormwater harvesting design model

- daily time steps
- Input variables: Local rainfall, collection area, runoff coefficient, initial loss, demand curves, tank size
- Output: Daily trend line, water saved, utilisation
- up to 20 year time series run
- Sensitivity analysis module for cost optimisation

www.watergroup.com.au

Water conservation

Executed Rainwater Harvesting Schemes

						Projected	Potable Water Savings m3 or g		
Scheme	Water Use	Collection Area m2 or ft2	Annual Rainfall mm or inches	Tankage m3 or gallons	mm or inch of rain to fill empty tank	per annum	per m3 or gal Tankage	per m2 or ft2 collection area	as % of rainfall
Warehouse, cool	Cooling towers	21,100	827	890	42	11,010	12.4	0.52	63%
store	Cooling towers	226,821	33	234,211	1.7	2,897,368	12.4	12.8	05 /0
Football Stadium	Irrigation	2,450	920	150	61	1,700	- 11.3	0.69	75%
	Ingation	26,337	36	39,474	2.4	447,368		17.0	
Car Park	Irrigation	10,000	1,150	660	66	7,160	10.8	0.72	62%
Car Faik Inigation	107,498	45	173,684	2.6	1,884,211	10.0	0.8 0.72 17.5 7.8 0.41	02 /0	
Depet week weter	1,500	720	80	53	620	7.8 0.	0.41	57%	
Depot	wash water	16,125	28	21,053	2.1	163,158	7.8 10.1		
Call Center (with	Amonitios	8,500	1,120	400	47	6,300	15.8	0.74	66%
shift work)	Amenilies	91,373	44	105,263	1.9	1,657,895	15.0	18.1	
Hospital	Cooling towor	3,400	675	120	35	1,980	16.5	0.58	86%
позрна	Cooling tower	36,549	27	31,579	1.4	521,053	10.0	14.3	
Depot Amenities, irrig., wash	1,200	1,190	100	83	995	10.0	0.83	709/	
	wash	12,900	47	26,316	3.3	261,842	10.0	20.3	70%
Dopot	Vohielowash	1,600	1,120	150	94	810	5 /	0.51	159/
Depol	venicie wash	17,200	44	39,474	3.7	213,158	0.4	12.4	40%

Design Guidelines

- avoid large volumes 50 to 80mm (2-3'') max to fill an empty tank
- annual savings about 10-12 times tank volume
- you save about 2/3 of the runoff
- you save more with a greater demand
- limit the intercept rate
- good engineering
- monitor

A Rainwater tank – not a dam!

Rainwater Harvesting Design Model Woolworths Minchinbury RDC - 2 Model Input Comments annual rainfall: 965mm Reference rainfall station Prospect Rainfall collection area m2 21.100 Runoff coefficient 0.95 steel roof Initial loss mm 2 \$3.20 Price of Water \$/kL \$1.85 potable water/\$1.35 wastewater Rainwater used for cooling towers Typical consumption & pattern seasonal profile, 20 to 70 kL/day Tank Size kL 890 42 mm of rain to fill empty tank

Model Output		Comments	
Available rainwater kL/yr	17,750	145% of demand	
Water demand kL/yr	12,207		
Overflow volume kL/yr	6,738		
Top up water kL/yr	1,228		
Potable water savings kL/yr	11,012		
% Potable water saved	90%		
% Available rainwater collected	62%		
Cost Savings \$/yr	\$38,739	incl chemical savings of 3.5k	

Design Philosophies – where rain and stormwater harvesting are different Traditional Hydraulic Design

- maximum flow for safety/flood protection; avoid structural damage, disruption, erosion, health & well being
- based on "accepted" level of recurrence (1 in 20, 50 or 100 years, 5 min in 20 years)

Rain or Stormwater Harvesting Design

- economically optimised scheme to supplement urban water supplies
- what is the minimum extraction or diversion rate needed to collect most water whilst optimising harvested water quality

"Process Flow Diagram"

Is there a better way? How we checked it

- 6 min rainfall data
- algorithm from RainHarD (Rainwater Harvesting Design Model)
- continuous demand
- initial losses neglected
- ratio of capture area, tank volumes and demand based on a well designed commercial system

Is there a better way?

- 6 min rainfall data
- algorithm from RainHarD (Rainwater Harvesting Design Model)
- continuous demand
- initial losses neglected
- ratio of capture area, tank volumes and demand based on a well designed commercial system
- normalised for a 1,000m² effective runoff area
- a demand of 600-1,000m3/yr = 50-90% of available water, 10-15 times tank volume
- 40-80mm(1.5 3") to fill an empty tank
- harvest flow rates equiv. to 20-3 mm(0.8-0.1")/hr rain intensity
- 6 min time steps, no flow attenuation

The Scenarios

- 40, 60 or 80 kL tank (=40, 60, 80 mm to fill tank)
- harvest rate equivalent to
 1, 3, 5, 10, 20 20-3 mm/hr rain intensity
- 600, 800, 1,000 kL/yr demand

The Results

Scenario	Available Storage Capacity kL	Harvest Rate mm/hr	Demand kL/yr	Assessed Water Savings kL/yr	Max Savings at unre- stricted harvest rate kL/yr	% of Max Savings
80 / 3 / 600	80	3	600	519	519	100%
80 / 3 / 1000	80	3	1,000	734	742	99%
80 / 5 / 1000	80	5	1,000	739	742	100%
80 / 8 / 1000	80	8	1,000	742	742	100%
80 / 20 / 600	80	20	600	519	519	100%
60 / 3 / 600	60	3	600	519	519	100%
60 / 1 / 600	60	1	600	515	519	99%
40 / 1 / 600	40	1	600	511	514	99%
40 / 3 / 600	40	3	600	514	514	100%
40 / 3 / 800	40	3	800	626	632	99%
40 / 5 / 800	40	5	800	630	632	100%
40 / 8 / 800	40	8	800	632	632	100%

Further Scenario Analysis – for 4 large events

Scenario	Event 1		Eve	ent 2	Ev	ent 3	Ev	ent 4
max/max	56	100%	219	365%	89	148%	63	106%
80kL/max	56	100%	80	133%	80	133%	63	106%
60kL/max	56	100%	60	100%	60	100%	60	100%
40kL/max	40	71%	40	67%	40	67%	40	67%
60kL/ 20mm/hr	56	100%	60	100%	60	100%	60	100%
60kL/ 15mm/hr	56	100%	60	100%	60	100%	60	100%
60kL/ 10mm/hr	55	98%	60	100%	60	100%	60	100%
60kL/ 8mm/hr	53	95%	60	100%	60	100%	60	100%
60kL/ 5mm/hr	50	89%	60	100%	60	100%	60	100%
60kL/ 3mm/hr	45	80%	60	100%	60	100%	60	100%

Percentage figures relate to harvestable volume relative to 60kL available storage

Results

- few events have intensities >10mm(0.4")/hr
- for large events extraction rates of <3(1.1")mm/hr would have yielded same savings
- only 1 event showed significantly less capture at restricted rates - but negligible in annual balance

Intercept Design Conclusions

- whilst drainage pipes are sized for a 1 in 10 year or more event and downpipes for 5min in 20 yrs – rain and stormwater intercepts need not
- no justification seen for rates equivalent to 30-40mm (1.2-1.6")/hr
- diversion rates as low as 1-3 mm(0.4-.12"/hr, equivalent to 0.3-0.8 L/s per 1,000m² yield close to maximum savings

Recommendation

Allowing for limited analysis and uncertainties due to climate change, use an extraction/diversion rate of 5mm(0.2"/hr or 1.4L/s per 1,000m² (2gpm/ft²) effective runoff area

What this enables: Peak Flow Diversion Benefits/Why?

For large schemes

- Collection main e.g. 150mm(8") instead of 650mm(24")
- Easier to deal with residual overflows
- Enables solutions that otherwise would not have been possible

Try doing this with a 20" main!

The associated collection area: 2 Football fields!

21,000m² 5 acres

Benefits/Why?

For large schemes

- Smaller collection mains, e.g. 150mm instead of 650mm
- Easier to deal with residual overflows
- Systems "without overflows"

Peak Flow Diversion

Benefits/Why?

For large schemes

- Smaller collection mains, e.g. 150mm instead of 650mm
- Easier to deal with residual overflows
- Systems "without overflows"
- Smaller extraction rates = smaller pumps & pipes
- Better water quality

Potable water consumption before & after rainwater harvesting

18/05/2009 12:00: Flow (kL/hr) 12.00 160 10.29 140 8.57 120 6.86 100 **Before RWH** 5.14 $60-120 \text{ m}^3\text{L/day}$ 3.43 6 1.71 16,000-32,000gal/d 0 8/04/2009 15/04/2009 4/03/2009 11/03/2009 18/03/2009 25/03/2009 1/04/2009 22/04/2009 29/04/2009 6/05/2009 13/05/200 Combined daily flow of all meters within this node (kL) Hourly Flow (kL) 5/08/2009 12:00 Flow (kL/hr) 10.00 140 8.71 120 7.43 100 After RWH 6.14 $60-80 \text{ m}^3/\text{day}$ 4.86 3.57 16,000-21,000gal/d 2.29 1.00 27/05/2009 3/06/2009 10/06/2009 17/06/2009 24/06/2009 1/07/2009 8/07/2009 15/07/2009 22/07/2009 29/07/2009 Combined daily flow of all meters within this node (kL) Hourly Flow (kL)

How we worked the tank harder – and saved 2.5 time the volume of water

Model Output		Comments
Available rainwater kL/yr	11,268	495% more rainwater than demand, add
Water demand kL/yr	2,278	extra consumers if possible
Overflow volume kL/yr	8,816	
Top up water kL/yr		
Potable water savings kL/yr	2,452	
% Potable water saved	1 00%	
% Available rainwater collected	22%	
Cost Savings \$/yr	\$4,486	

Model Output	Comments
Available rainwater kL/yr	11,268 132% of demand
Water demand kL/yr	8,556
Overflow volume kL/yr	5,513
Top up water kL/yr	2,665
Potable water savings kL/yr	5,755
% Potable water saved	69%
% Available rainwater collected	51%
Cost Savings \$/yr	\$10,532

Another example of "An empty tank is a good tank"

Large stormwater harvesting schemes

Excellent water quality

Re-cap

- tanks sized for 40-60mm (~2 inches) of rain to fill an empty tank
- tanks as part of an integrated urban water supply system
- annual water savings 10-15 times tank volume
- flow rates equivalent to a rainfall intensity of 5mm/hr (2/10 of an inch/hr) ok for hydraulic design
- paybacks of 6-10 years for hard working commercial systems
- modelling, good hydraulic design & attention to detail

Conclusion

Appropriately sized hard working commercial rain or stormwater harvesting systems capturing the water where it falls and where the demand is, can provide an economically attractive sustainable solution to diversify our water supplies to combat the effects of climate change and increased population pressure.

> Guenter Hauber-Davidson ghd@watergroup.com.au Sydney/Australia

