This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Saving Water, Saves Energy, and Our Climate: A How-To on Estimating Greenhouse Gas Emissions Reductions from Water Conservation

Lisa Maddaus, P.E.

Jenny Gain, P.E.

Brown and Caldwell

Water Smart Innovations Conference

October 2009

BROWN AND CALDWELL

Big Picture

- Water-Energy-GHG connection
 - Water/Wastewater systems energy usage, O&M and capital facilities
 - End-use energy savings through water conservation
 - GHG savings from water savings
- Case Studies
 - Placer County Water Agency Energy and GHG Benchmarking Study
 - Sacramento Municipal Utility District partnering with Regional Water Authority

Rising Mean Temperatures Location: California

Reaching Critical Mass and Starting a Word of Mouth Epidemic

 Tipping points are "the levels at which the momentum for change becomes unstoppable."
Malcom Galdwell

Keys to Action – "Tipping Point"

CLIMATE ACTION **RESERVE**

- Grass roots level:
 - customers, media, publications
 - GreenPlumbersUSA
 - US Green Building Council, LEED stds
- Utility action: electric, natural gas, wastewater and water
- State action: California Climate Action Registry (voluntary)
- Mandatory legislation (California AB32)
- Federal action: USEPA WaterSense Program, ARRA funding for efficiency

Three Fundamental Questions

Emissions are global

- -Does not matter where in location
- -Does not matter when in time
- -It's a "how much" question
- Conserve Water = Conserve Energy?
- How much energy can we save through water conservation? (short term energy crisis response versus long term trend)
- How many millions of tons of Green House Gas Emissions will be avoided?

Why is Water Efficiency a Solution?

- All GHG gases are emitted from consumption
- Easiest way to reduce emissions is to use less fuel
- Lowering water demand reduces total and peak energy demands and total CO₂e
- Scale load shifting helps but the key is total emissions (CO₂)
- Only other means to lower emissions is to find "clean" sources (e.g., produce own energy, wind/solar, hydropower)

National Summary: Energy Use of Water/Wastewater Operations

Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities

- Water is 3rd largest use in residential homes behind AC and refrigeration
- 60,000 water systems and 15,000 wastewater systems in United States (>10,000 connections)
- 75 billion kWh nationally
- 3% of United States electricity use

Electric Power Research Institute, EPRI's Municipal Water and Wastewater Program, Energy Audit Manual for Water/Wastewater Facilities

California Energy Commission Report (104-300)

 Does not include end uses (e.g., natural gas for water heating)

Energy Inputs

- Water systems use for pumping and processes
- Supply side higher due to pressurized flow
- Wastewater systems use gravity but treatment processes more energy intensive
 - Ultraviolet (UV)
 - Ozone generators
- Treatment systems electrical use projected to increase 20% over years (1996 EPRI Report CR-106941)

Water Use Cycle Energy Intensities = Embedded Energy

Source: California Energy Commission, 2005 Integrated Energy Policy Report

California's Water-Energy Connection

Sustainable Energy Practices Guidebook for Public Agencies

 Critical elements of California's surface water infrastructure are highly energy intensive

- -Long distances
- -Significant Elevations
- Geographical variation in water sources
- 60% population in southern California
- Different treatment requirements due to variance in water quality

California Assembly Bill 32 GHG Inventories and Reduction Measures

- Assembly Bill 32, 2006
 - Text of the law that empowered the Air Resources Board to regulate greenhouse gas (GHG) emissions.
- New protocol for water/wastewater utilities emission inventories protocols
- Early action measures to be implementation 2010
- Expanded reduction measures list to be 2011 target energy conservation
- GHG Cap and Trade system

Water-Related Energy Use – CA 2001

	Electricity	Natural Gas	Diesel	
	(GWh)	(Million Therms)	(Million Gallons)	
Water Supply and Treatment				
Urban	7,554	19	?	
Agricultural	3,188			
End Uses				
Agricultural	7,372	18	88	
Residential				
Commercial	27,887	4,220	?	
Industrial				
Wastewater Treatment	2,012	27	?	
Totals	48,012	4,284	88	
2001 Consumption	250,494	13,571	?	
Percent of Energy Use	19%	32%	?	
CO ₂ e (Million Metric Tons)	56	50		

Approximately 25% of the nation's stationary energy use goes to water in some form.

Source: California Energy Commission, 2005 Integrated Energy Policy Report

5 Step Approach to Estimating GHG Reductions Related to Water Efficiency

1. Calculate embedded Divide annual energy demand by annual water production energy (kWh/AF) Source: Water utility energy analysis 2. **Research GHG** May be multiple energy providers emissions (lbs CO₂e per MWh) Source: Energy or water provider GHG inventory 3. Calculate water Use quantifiable water (and wastewater) savings potential savings estimates (AF/year or MG/year) (AF/year) Source: Conservation plans (i.e., GPCD targets, business case benefit cost analyses) Results may be by type of water conservation measure or 4. Multiply results to get overall program savings and across years (using GHG reductions from appropriate useful life per measure) water conservation (metric tons CO₂e per yr) Speak to and publish 5. Merge information into Climate Action Plan or other estimates planning documents, public and school outreach campaigns, websites, media interviews, etc

Case Study: Placer County Water Agency Energy Analysis

- Board Strategy
- Partnership Discussions and Opportunities
- Quantify Total Energy Use: Current use, future use
- Optimize PG&E Energy Costs: Rate structures and rebates
- Evaluate Alternative Energy Sources
- Electric Power Reliability
 - Outage frequency
 - Exiting backup power
 - Energy reliability improvement
 - Water supply during a blackout
- Estimate GHG Footprint
- California Climate Action Registry Support Evaluate Energy Conservation and Optimization
 - Existing conservation efforts
 - Linkage between water conservation and energy conservation
 - Future energy conservation and optimization options
 - Identify water treatment and distribution system optimization

2007 Greenhouse Gas Inventory (Metric Tons of CO₂ Equivalent)

GHG per Acre-Foot of Water Supply

- 2007 treated water raw water pumping by source:
- PG&E supply (Bear/Yuba Rivers) = 29,500 AF
 - Total electrical demand = 1.5 million kWh
 - Emissions factor for PGE power = 0.45581 lbs CO₂e per kWh
 - GHG for PGE supply = 712,659 lbs CO₂e
- Middle Fork Project (American River) = 2,400 AF
 - Total electrical demand = 1.03 million kWh
 - Emissions factor = 0.45581 lbs CO2e per kWh
 - GHG emissions = 472,584 lbs CO₂e

Future Growth =

double in water demand but have 7 times more energy demand

Opportunity **Reduce Water Losses = GHG Reduction**

- 2007 Total losses = 2,429 AF
 - Average 78 kwh/AF
 - Emission factor = 0.45581 lbs
 - 86,000 lbs CO₂e

Loss Reduction from 2006 to 2007 = 585 AF

- Reduced 20,790 lbs CO₂e
- Saving 39 metric tons CO₂e compares to removing all 31 metric tons CO_2e generated from off-road vehicles
- Shifting Focus to Zone 1 most western and warmest (lowest elevation) has the highest energy demand and the newer pipes and homes

Energy

een house

Sacramento Water-Energy Partnership

- Regional Water Authority and Sacramento Municipal Utility District
 - Goals:
 - -water savings (RWA members)
 - end-use energy savings
 - -GHG savings (SMUD)
 - Memorandum of Understanding 2006
 - Historical coordination and in-kind support
 - Clothes Washer Support for combined rebate (participating water districts adding \$50 to SMUD \$125) for CEE Tier 3
 - More outreach and partnering planned in 2010

Sacramento Municipal Utility District Partnership

- 14 of the Top 40 SMUD customers are water districts in 2005
- Total estimated over 100 GWh for 19 water utilities for total energy cost of \$20 million in 2005
- SMUD analyzed average embedded energy savings from water and wastewater
 - –Average 700 gals water saved = 1 kWh
 - -Same for wastewater (700 gals = 1 kWh saved)

2006 GHG Inventory Report for SMUD

- Owns 1,733 MW of electricity generation capacity and imports from New Mexico
 - -993 MW natural gas fired plants
 - -690 MW hydroelectric power
 - -38 MW wind power
 - -10.2 MW solar power
- Delivered over 10,000 GWh of electricity
- Generated about 2 million metric tons CO₂
- Generated 555 lbs CO₂ per MWh delivered to customers

SMUD Technical Analysis Summary Results

		Water Efficient Toilets	Water Efficient Clothes Washers	Pre- Rinse Spray Valves	Conductivity Controllers
Usefu	l Life (yrs)	25	15	5	5
Assun Numb Repla	ned Total er of Units ced	Multi-family: 2,300 CII Toilets: 2,500 CII Urinals: 1,000	Residential: 7,500	CII: 7,000	CII: 45
SMUD	Incentive	\$25	\$125	\$75	\$200
Bene	Water, Wastewater, and Electric	1.3 ^a	1.7	2.0	3.7
Cost	Water Only	1.2 ^a	3.3	1.4	2.8
Ratio	Electric Only	1.0 ^a	0.6	0.5	0.8

GHG Savings from Water Conservation

	Water Efficient Toilets	Water Efficient Clothes Washers	Pre-Rinse Spray Valves	Conductivity Controllers
Total Estimated Water Savings (kgal/yr)	75,000	93,000	50,000	33,000
Total Estimated Wastewater Savings (kgal/yr)	75,000	93,000	50,000	NA
Total SMUD Annual Energy Savings (kWh/yr)	108,000	133,000	72,000	48,000
Total Annual CO ₂ Savings* (tons)	30	40	20	20
Total Estimated CO ₂ Savings (tons for useful life of device)	750	1,000	500	500

Calculated using SMUD GHG Inventory Report (2006) of 555 lb CO₂/MWh generated from electricity delivered to customers

Ranked Outcomes

Measure	No. of measures	CO ₂ e savings (Ibs) per measure	Benefit-cost Ratio
Conductivity Controllers	45	888.9	3.7
Water Efficient Clothes Washers	7,500	10.7	1.7
Water Efficient Toilets (ULFTs)	5,800	10.3	1.3
Pre-rinse Spray Valves	7,000	5.7	2

Final Thoughts

- Going beyond water savings....
- What resources are we really wasting?
- What is the potential added savings of reducing on-peak demand and wastewater flows?
- How much energy demand lowered?
- How much cost savings for energy?
- Bottomline: How much GHG emissions are eliminated when water demand is reduced?

California Water-Energy Key References

Climate Action Team Report, 2006

http://www.climatechange.ca.gov

- Progress for Incorporating Climate Change into Management of California's Water Resources, July 2006
- California's Water-Energy Relationship, California Energy Commission, Gary Klein, et. al., 2005
- Methodology for Analysis of the Energy Intensity of California's Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures, UCSB, Robert Wilkinson, 2000
- AWWARF Residential End Uses Study, 1999

Useful Web Sites

- Climate Action Reserve
 - http://www.climateactionreserve.org
- US Department of Energy (Energy Star) – www.doe.gov
- US EPA WaterSense Program
 - www.epa.gov/watersense
- California Energy Commission
 - www.energy.ca.gov
- California Department of Water Resources
 - www.water.ca.gov
- California Urban Water Conservation Council – www.cuwcc.org
- CUWCC's Water Saver Home
 - www.h2ouse.org

Questions?

It's not about us, its about our future

Lisa Maddaus (916) 853-5317
<u>Imaddaus@brwncald.com</u>

Jenny Gain (925) 210-2225
jgain@brwncald.com