This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Alternate On-Site Sources of Water – The New Green Build Buzz & Much More

Presented at WaterSmart Innovations 2009 October 7, 2009 Las Vegas, Nevada by H.W. (Bill) Hoffman, PE Water Management, Inc. The Green Bandwagon is Starting

LEED 2009 & Alternate Sources of Water Use of alternate on-site sources of water is recognized as one way of accomplishing these goals.

LEED EB 09 14 water points out of 110 total

		Wat	er Efficiency	/	14	Points
Y		Prereq 1	Minimum I	Indoor Plumbing Fixture and Fitting Efficiency	Required	
		Credit 1.	1 Water Perf	formance Measurement: Whole building metering	1	
		Credit 1.	2 Water Per	formance Measurement: Submetering	1	
		Credit 2	Additional	Indoor Plumbing Fixture and Fitting Efficiency	1 to 5	
			Credit 2.1	10% Reduction	1	
			Credit 2.2	20% Reduction	3	
			Credit 2.3	30% Reduction	5	
		Credit 3	Water Effi	cient Landscaping	1 to 5	
		_	Credit 3.1	50% Reduction	1	
			Credit 3.2	75% Reduction	3	
			Credit 3.3	100% Reduction	5	
		Credit 4.	1 Cooling To	ower Water Management: Chemical Management	1	
		Credit 4.	2 Cooling To	ower Water Management: Non-Potable Water Source Use	1	
Ves	7 Nr					

LEED NC 2009 10 water points out of 100 total

Wat	er Efficiency	10	Points
 _			
Prereq 1	Water Use Reduction, 20% Reduction	Required	
Credit 1.1	Water Efficient Landscaping, Reduce by 50%	2	
Credit 1.2	Water Efficient Landscaping, No Potable Use or No Irrigation	2	
Credit 2	Innovative Wastewater Technologies	2	
Credit 3.1	Water Use Reduction, 30% Reduction	2	
Credit 3.2	Water Use Reduction, 40% Reduction	2	

LEED 3.0 ?

Green Build Initiative

- Project Management 100 points
- **Site = 120 points** (including 28 for irrigation)
- Energy 300 points
- Water 130 points
- Resource and Materials 145 points
- Emissions and Storage of Hazardous materials – 45 points
- Indoor Air Quality 160

GBI Water Points

•	Plumbing	46
•	Cooling Towers	18
•	Boilers	4
•	Food Svc.	12
•	Med./Lab	11
•	Laundry	10
•	Water Features	4
•	Water Treatment	5
•	Alternate Sources	14
•	Metering	6
		TOTAL 130

Add 28 points for irrigation in sites for a total of 158 water points out of 1000 total

Green Globes Points

Replacement of Potable Water Use with Alternate Sources of Water

Points	Percent of Potable Water Replaced With On Site Sources
2 points	15%-25%
4 points	26%-35%
6points	36%-45%
8 points	46%-55%
10 points	56%-65%
14 points	Over 60%

IAPMO Green Technical Committee

Uniform Plumbing Code

Uniform Mechanical Code

Types of Alternate Sources in IAPMO Green Supplement

- Gray Water (Untreated)
- Rainwater

- Municipal Reclaimed Water
- Other On-Site Sources (Treated to meet needed)

ICC just starting

States with some form of Gray Water Rules

🖢 – States with Rules

8-4-09

Alternate On-Site Sources of Water

- Rainwater harvesting
- Stormwater harvesting
- Air conditioner condensate
- Swimming pool filter backwash water
- Cooling tower blowdown
- Reverse osmosis (RO) and nanofiltration (NF) reject water
- Gray water
- On-site treated wastewater systems
- Foundation drain water
- Others?????

Matching Source to Use

• The Quality of the source must be acceptable for use.

Treatment may be required

• The quantity of the source must be quantified.

Basic Water Chemistry

- Dissolved Salts
- Alkalinity, pH, Bicarbonate, etc.
- Hardness
- Iron and Manganese
- Organics
- Particulates
- Silica
- Biological Specie

Types of Treatment

- Filtration of particulates and smaller particles
- Removal of cations and anions
- Removal of organic matter
- Softening
- Disinfection
- Special treatment

Note: 1 micron (micrometer) = 4 x 10-5 inches = 1 x 104 Angstrom units

© 2004 - Koch Membrane Systems

Table 1. - Water Quality Consideration forAlternate On-site Sources of Water

	Water Quality Considerations						
Possible Sources	Sediment	(TDS)	Hardness	Organic (BOD)	Pathogens (A)	Other considerations	
Rainwater	1-2	1	1	1	1	None	
Storm water	3	?	1	2	2	Pesticides & fertilizers	
Air conditioner condensate	1	1	1	1	2	May contain cooper when coil cleaned	
Pool filter backwash	3	2	2	1	2	Pool treatment chemicals	
Cooling tower blowdown	2	3+	3	2	2	Cooling tower treatment chemicals	
RO & NF reject water	1	3+	3	1	1	High salt content	
Gray water	3	2	2	3	3	Detergents and bleach	
On-site wastewater treatment	3	2	2	3+	3+	Human waste	
Foundation Drain Water	1	>	?	2	2	Similar to stormwater	

The use pass-through (once-through) cooling water is also a possible source of on-site water, but should be discouraged because of its huge potential to waste water, but it does provide a very clean source of water. For that reason, it is not included in this list.

1.Low level of concern

2. Medium level and may need additional treatment depending on end use

3. High concentrations are possible and additional treatment likely

? Dependent on local conditions

(A) All water used inside for toilet flushing and other uses should be disinfected.

Table 2 Types of Treatment That May Be Employed Depending on Intended End Use Quality Needs						
Possible Sources	Filtration	Sedimentation	Disinfection	Biological Treatment	Other Treatment Considerations	
Rainwater	?	?	?		May be use for irrigation without additional treatment	
Storm water	X	?	?	?	For non-potable use only	
Air conditioner condensate			x		Segregate coil cleaning water	
Pool filter backwash	X	?			May have high TDS and chlorine levels	
Cooling tower blowdown	?	?	x		Consider TDS monitoring	
RO & NF reject water					Consider TDS monitoring	
Gray water	x	?	x	?	Biologically unstable for long periods of storage unless treated. Subsurface drip requires the least treatment.	
On-site wastewater treatment	X	x	X	X	Biologically unstable for long periods of storage unless treated	
Foundation Drain Water	?	?	?		May be hard if in alkaline soils	
X - Treatment likely needed						

? - Treatment depends on ultimate use

Quantifying Volume Available

• Engineering Estimates

 Metering and Bucket and Stopwatch

Sizing Storage vs. Use

The Quality – Quantity Quandary

Process	Proces	s Needs	Process Discharge		
	Volume	Quality	Volume	Quality	
Cooling					
Wash/ Clean					
Process					
????					

Cost Considerations

- The volume produced
- The timing of when the source is produced in relationship to the demand;
- The potential to combine multiple sources;
- Water quality;
- Type of treatment required;
- System cost and payback.

Regulations, Codes & Incentives

- Regulations & Code give credence
- Codes available are outdated

- Few States have any type of regulation
- Incentives do exist in States and local jurisdictions

Rainwater & Stormwater

• The most recognizable

• Thousands of years of history

Reduces storm surges & pollution

 Reduces combines sewer overflows

Rainwater Collection Rates

One inch of water = 0.623 gallons

- The surface it falls on will determine runoff
 - > Wetting
 - > Holdup

You only catch rain when it rains

Rainwater "guzzlers" at **Big Bend State Park in** far West **Texas are** used to provide water for wildlife.

Stormwater

Proven Practices

- Include capture in on-site features, such as berms, swales, rain gardens, or terraces, and the use of soil as a water-storage medium jointly in the design of landscape and stormwater facilities.
- Require stormwater ponds to be established or enlarged to accommodate long-term storage for landscape irrigation and other uses.

Additional Methods

• Examine the potential of captured and stored stormwater along with other on-site sources of water.

Open Charter Elementary School

Cistern is framework of plastic modules

Using Landscape as a Rain/Storm Water Harvesting System

Shape land to hold water

Landscape Design Concepts

- Soil preparation and depth
- Shape land to hold water
- Chose appropriate plant material
- Proper irrigation system design
- Capture on-site sources of water
- Symbiosis between landscape and stormwater control
- KEEP IT WHERE IT FALLS

Soil Preparation and Depth

6" to 8" of well amended soil

Sun Valley Watershed Management Plan

...but also

Stormwater-capture BMPs on 20 to 40% of individual properties

American Rainwater Catchment Systems Association

http://www.arcsa-usa.org

Using Air Conditioner Condensate

Pools & Spas

Reuse of filter backwash at City Pools For landscape irrigation

Foundation Drain Water

Sometimes you got'a-get down and dirty!

Gray Water and Other Things

In-Home Gray Water Production

Actual Gray Water Requirements

- In Tokyo, Japan, gray water recycling is mandatory for buildings with an area greater than 30,000m² or with a potential non-potable demand of more than 100m³ per day.
- In Cyprus, the use of gray water for garden irrigation and toilet flushing has been subsidized to the tune of approximately \$2,000 per dwelling.

Fecal Levels Chart-Log Scale

Some Products from Australia

Gator

EcoCare Diverter

Water Browser

H2Gro

AQUS™ System

Brac Indoor System for Flushing

Brac System

GE Zenon Technology

Some Gray Water Systems and Their Cost

System	~Cost
AQUIS	\$300
Brac Greywater	\$2500
Australian "Wheelie Bin"	\$400
Australian "Eco-Care"	\$900
Australian "H2O grO	\$3,000
Zenon system for large buildings	\$750,000

Other Single Source Examples

Ranges of Use Reported in Literature

Freshwater use in gallons per vehicle	Self-Service	In-Bay Automatic	Conveyor	
(gpv)			Friction	Frictionless
no Reclaim	15	50 – 60	65.8	85.3
Separation Only	n/a	30*	34.8	70
Filtration	n/a	8	7.8 – 13.8	16.8 – 31.8

Water Reclaim Systems

An **Example** of Water **Reuse** at a Hotel Laundry.

Large Laundry Recycle

Lab Water Recovery Systems at The University of Texas at Austin

Combining Sources

What You Want To See!

New Bank of America Tower in Manhattan

This LEED Platinum project collects rainwater, gray-water foundation drain water and A/C condensate water for reuse in toilet flushing and cooling tower makeup.

Cook+Fox Architect
AMD Lantana Site

- Largest known rainwater/AC condensate harvesting project
- Used for irrigation and cooling tower makeup
- 1.3 Million Gallons

Part of rainwater harvesting system at Austin's new Homeless Shelter.

Rainwater & AC condensate will be used for toilet and urinal flushing and landscape (planter box) irrigation.

H.W. (Bill) Hoffman, P.E. H.W. (Bill) Hoffman & Associates, LLC & Water Management, Inc. 9013 Texas Sun Drive Austin, Texas 78748

> Phone: 512-280-0199 Mobil: 512-294-7193 billhoffmantx@earthlink.net