This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Calculating Energy and CO2 Savings Related to Water Efficiency (the Easy Way)

> WaterSmart '09 Innovations Las Vegas Thursday Oct. 8, 2009

Bill Gauley, P.Eng. Veritec Consulting Inc. Mississauga, Ontario

The (our!) Environment

- People are generally becoming more aware of the negative impacts our actions can have on our environment –
 - We want "green" products with less packaging and lower life-cycle costs
 - We want sustainable lifestyles
 - Popularity of "Inconvenient Truth"
 - Solar power, wind power, electric cars, etc.

Water and Energy

- Einstein discovered the relationship between mass and energy in the early 1900s
- It took us almost 100 years to discover the relationship between water and energy
- Energy is used by the water agency to:
 - collect raw water, treat water, distribute to customer
 - collect wastewater, treatment, discharge to environment
- Energy is used by customer for:
 - heating, cooling, pumping, etc.

How much energy?

- The amount of energy depends on more than just the related volume of water,
- Also depends on system characteristics:
 - Efficiency of pumps, pipes, etc.
 - Distance water is pumped,
 - Elevation to which water is pumped, etc.
- And End uses:
 - Is water heated? How hot? How heated?

Different degrees of Accuracy

- We know that we can save lumber (trees) if we build homes with studs placed on 24inch centers vs. 16-inch centers.
 - But how much lumber can we save?
- Should we obtain the blue prints for all new homes and calculate the savings?
 - Big job!

Water Savings

- How much water can Joe save by installing an HET?
 - How many toilets in Joe's house?
 - How many people in Joe's house?
 - How many times per day does each person flush?
 - How many #1s? How many #2s?
- Lots of data required.
- Analysis not practical on large scale.
 - How much water can be saved in U.S. with HETs?

Water / Energy Savings

- How much energy can be saved in U.S. by switching to HETs? Front-load washers? Washing clothes with cold water? Hot water recirculation systems? Etc.
- Important to know, but not practical (and probably not possible) to determine 100% accurately.
 - Evaluate every component of every water/wastewater system in the country.

It's all about ABOUT

- Question
 - How many jelly beans are in the jar?
- Answer
 - I would say about 400 or so...
- Reply
 - NOPE! There's only 398.

Bang for the Buck...

- If there is no way to know the exact number, we need to determine the level of accuracy that we would be happy with.
- This is often related to the level of effort that would be required to move to the next level of accuracy.
 - e.g., miles of coast line
 - e.g., flush volume of a toilet

Energy Savings Choice

- Which saves more energy?
 - Reducing hot water demand of shower by 20 gallons, or
 - reducing irrigation by 1,000 gallons.
- A: The shower would save about 7.5 kWh and the irrigation only about 2.3 kWh.

But - how can we know this?

Let's consider what we don't know -

- We don't know:
 - where the water was produced or how far it is pumped
 - if the water was heated with an electric or gas water heater
 - the efficiency of the water heater
 - the temperature differential of the cold/hot water, etc.

Now, let's consider what we do know (more or less) -

- We have a good idea of the:
 - energy required to heat water
 - average efficiency of water heaters
 - avg. temperature differential of cold/hot water
 - percentage of electric vs. gas water heaters
 - approximate avg. energy related to water treatment/supply & wastewater collection/treatment

Hot, hot, hot

- We also know that the energy required to heat water is MUCH more than the energy required to treat/distribute water.
- In fact, it appears that <u>on average</u> it takes as much energy to heat about 1.0 gallon of water in a residential water heater as it does to treat/distribute/collect/treat about 150 gallons in a municipal system.

Type of savings impacts energy

- Some savings can include hot water (showers, clothes washers, dishwashers)
 - less important to know details of water/wastewater system
- Some savings can include water and wastewater (toilets, showers, etc.),
- And some just water (e.g., irrigation).
- But, what about CO2e?

Big variations in Co2/kWh

- The amount of CO2e varies significantly depending on how energy is produced –
 - Hydro, oil, natural gas, nuclear, etc.
 - Can range from about 0.01 kgCO2/kWh (hydro) to about 1.0 kgCO2/kWh (coal)
- Not only is each State and Province different, but there can be differences within each State and Province

About...

- In most cases, however, having a State- or Province-wide value may be 'close enough'
- Especially if the water-efficiency program is being done on a State-wide basis.
- By all means if you have more accurate data, use it!

The Excel-based Calculator

- Very simple requires minimal input
- Uses accepted values, conversions, e.g.,
 it takes 1.0 kcal to heat 1 L of water by 1C
- Plus (from Ont. research by Carol Maas)
 - treat/distribute 1m3 water ~ 0.60 kWh
 - 440 gal ~ 1 kWh (700gal in plant?)
 - reduction savings water ~ 87%
 - collect/treat 1m3 wastewater ~ 0.55 kWh
 - reduction savings wastewater ~ 8%

Calculator (con't)

- Makes assumptions that can be 'overridden', e.g.,:
 - Temperature differential cold/hot = 100F (55C)
 - Efficiency of electric water heaters = 88%
 - Efficiency of gas water heaters = 56%
 - 12% line losses (electrical transmission)
 - 1.93 kgCO2/m3 natural gas combustion
 - Lists kg CO2 / kWh for each State and Province

Calculator (con't)

State	kg CO2/kWh	Province	kg CO2/kWh
Alabama	0.60	B.C.	0.02
Alaska	0.69	Alberta	0.93
Arizona	0.51	Saskatchewan	0.87
Arkansas	0.55	Manitoba	0.02
California	0.27	Ontario	0.27
Colorado	0.83	Quebec	0.01
Connecticut	0.32	Nova Scotia	0.66
Delaware	0.82	New Brunswick	0.47
District of Columbia	1.22	PEI	1.18
Florida	0.57	Newfoundland	0.03
Georgia	0.65	Territories/Nunavut	0.15
U.S. Avg.	0.605	Canada Avg.	0.227

Calculator (con't)

Water savings	1,000	m3
Wastewater savings as a percentage of Water savings	100%	see note #1
Coefficient (kg CO2/kWh)	0.605	see note #2
% of total water savings that is heated	100%	see note #3
% of water heating via gas	50%	see note #4
% of water heating via elect.	50%	see note: #5
Savings	35,730.48	kg CO2

Note #1: irrigation, evaporation, etc. = 0%, toilets, showers, etc. = 100%

Note #2: input data for your system or select Provincial/State average from above.

Note #3: irrigation, toilets, etc. = 0%, showers = a value of approx. 50%, clothes washers = a value t Note #4: in some areas one type of water heater is more prevalent. If you know the approx. installed Note #5: if 0% of water is heated, these percentages are not used in calculations.

Example 1- Irrigation

-

Water savings (m3)	1,000
% Wastewater	0%
Coefficient (kg CO2/kWh)	0.605
% heated	0%
% heated via gas	50%
% heated via elect.	50%
Savings (kg CO2e)	359

<u>Breakdown of Energy Savings, kWh</u>	
municipal water	593.182
municipal wastewater	0.000
Total municipal energy	593.18
heating (gas)	0.00
heating (electricity)	0.00
total heating	0.00
Total kWh	593

Example 2 - Toilets

-

Water savings (m3)	1,000
% Wastewater	100%
Coefficient (kg CO2/kWh)	0.605
% heated	0%
% heated via gas	50%
% heated via elect.	50%
Savings (kg CO2e)	389

<u>Breakdown of Energy Savings, kWh</u>	
municipal water	593.182
municipal wastewater	50.000
Total municipal energy	643.18
heating (gas)	0.00
heating (electricity)	0.00
total heating	0.00
Total kWh	643

Example 3 - Showers

-

Water savings (m3)	1,000
% Wastewater	100%
Coefficient (kg CO2/kWh)	0.605
% heated	50%
% heated via gas	50%
% heated via elect.	50%
Savings (kg CO2e)	18,060

Breakdown of Energy Savings, kWh	
municipal water	593.182
municipal wastewater	50.000
Total municipal energy	643.18
heating (gas)	28,548.40
heating (electricity)	20,644.50
total heating	49,192.90
Total kWh	49,836

Daily savings if USA (307 million persons) switched to:

- HETs (5 F/d x 2 G/F)
 - 4.5 M kg CO2e & 7.5 M kWh
- 2 gpm showerheads (75% x 7 min./shower x 0.5 gpm, 60% hot water)
 66 M kg CO2e & 182 M kWh
- Efficient irrigation (45 g/day x 50% savings)
 9.4 M kg CO2e & 15.5 M kWh

Conclusions

- Can do calculations on a State-by-State or Province-by-Province basis
 - Or on a National basis
 - Or on a system-by-system basis
- Simple enough for average person to use
- A simple tool to help water agencies and governments prioritize water conservation projects and programs

Contact...

Bill Gauley, P.Eng. Veritec Consulting, Inc. Mississauga, Ontario

Tel. (905) 696-9391 bill@veritec.ca