This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

Water Harvesting

For Commercial & Institutional Buildings

JohnB@Wahaso.com 630-235-2143

Wahaso water harvesting solutions

Learning Objectives

- Understand water harvesting terms & trends
- Learn the approaches and benefits of harvesting.
 - How does LEED certification apply?
- Understand viable sources and uses of rainwater, greywater and groundwater
- Understand the major components of a commercial harvesting system
- Understand how the principles are applied
- Address FAQ's

What is "Water Harvesting"?

Water harvesting is the collection, cleaning, storage and recycling of rainwater, stormwater, greywater and other sources to replace or reduce the consumption of municipal potable water.

Trends Support Water Harvesting

Growing Scarcity of Fresh, Potable Water

Growing Interest in Sustainable Building Practices

> Growing Concerns Regarding Stormwater Management and the Environment

Regulatory Compliance and Incentives

Why Harvest Water?

- Retain and utilize stormwater
- Save money on municipal water and sewer charges
- Protect the environment

- "Green" building certification
- Regulatory requirements, incentives
- Higher resale
- Good public relations

LEED Certification is a Driver 10 or More LEED Points Available

* 2009 Proposed Changes

Buildings Present Harvesting Opportunty

Evaporative Cooling Tower 1,500,000 gallons annually

Rooftop rainwater 500,000 gallons annually

Cooling coil condensation 200,000 gallons annually

Parking lot rainwater 2,000,000 gallons annually

Toilet flushing 500,000 gallons annually

Landscape irrigation 750,000 gallons annually

Most Water Use in Commercial Buildings can be Replaced with Harvested Rainwater and Stormwater

The Greywater Conundrum

- A building's long useful life
- Greywater payout
- Predictable supply
- One chance to make it happen!

2010

Copyright 2009 Water Harvesting Solutions, Inc.

Development Process Touches Multiple Customers

Scoping: Evaluating Water Sources & Applications

- Each project has a unique combination of requirements and resources.
- The most efficient systems integrate sources & uses

Custom Rainwater Evaluation

System Components are Customized to Each Project

Primary Filtration & Storage

Considerations

- Initial filtration depends on sources
 - Mechanical & biological options

Mechanical Separators

Storage Method is a Key Variable

Copyright 2009 Water Harvesting Solutions, Inc

Architectural Integration of Storage

Steel Tanks Can Be Decorative - and Signal Harvesting Efforts ABU

Atlantis' Patented D-RainTank Technology

Unlimited Cistern Size and Configuration

Atlantis System is Ideal for Stormwater Retention & Resuse

Water is kept cool, clean and ready for reuse

Water Sterilization and Stabilization

Considerations

- How will water be used?
- Turnovers per day
- Methodology:
 UV, Chlorine, Chlorine
 Dioxide. Ozone

Ultra-Violet Sterilization

Chlorine Dosing System

Final Filtration and Pressurization

Considerations

- Output of harvesting system
- Water source; how and where will water be used?
- Final filtration options: bag, sand, ultra, carbon, R/O

- Custom controls programmed for each project
 - Monitor all systems 24/7; touch screen & web interface
 - Manage pressures, pumping, levels, filtration, cycling
 - Programmed to client specs and building automation

Case Studies Integrated Harvesting Systems

Harold Washington Social Security Building - Chicago

- 1970's Construction
- History of green initiatives
- Looking for more savings in water & energy

Harold Washington Social Security Building

Sources

- Rooftop rainwater
 - 100K+ gallons per month
- Condensate from cooling system
 - 12 gallons per minute
- Groundwater ejector pits
 - 2,000 gallons per day

Innovative Approaches to Maximizing Sources & Uses of Harvested Water

Uses

- Cooling tower "make-up" in warm season
 - 21K gallons per day
- Landscape irrigation
 300 gallons per day
- Toilet flushing in remodeled area
 - 350 gallons per day
- Boiler "make-up" in winter
 800 gallons per day

Innovative Efforts Approach Balance in Supply and Demand

Use Four 8,000 Gallon Decommissioned Tanks

System Up & Running Sept '09

Control system will track and display water harvested and applied

Annual Water & Sewer Savings at Current Rates: \$9,700

New York City Sanitation Building

"Tower 'O Garbage"

NYC WATER BOARDED WITH 14.5% RATE HIKE

Getting Soaked

Water rate hikes

2008: 14.5%

2007: 11.5%

2006:

2005:

2004:

2003:

2002:

9.4%

3.0%

5.5%

5.5%

6.5%

Projected change in annual bills

(starting July 1)

Single-family home

(100,000 gallons used)

\$699 to \$801

Apartments

(85,000 gallons used)

\$545 to \$681

Source: NYC Water Board

By DAVID SEIFMAN

May 17, 2008

No matter how sunny it is this summer, you're going to get soaked if you're a homeowner, because the Water Board yesterday approved a 14.5 percent hike in water rates that takes effect July 1.

That will bump up the bill for the average one-family home from \$699 to \$801 a

Sponsored Links

Click image to enlarge

New York Sanitation Building

- New metropolitan building to house & service sanitation trucks
 - Seeking LEED certification
 - High municipal water costs
 - 108 workers during peak days
 - 81,000 square foot roof
 - Green roof and impervious roof
 - Steam heat provided by City
 - Toilets, showers and truck washing
 - Greeley and Hansen engineers

Four Non-Potable Water Uses

3.8 million gallons of non-potable demand were identified

- 2 million gallons
 cooling tower makeup
- 1.3 million gallons toilet flushing
- 340K gallons truck washing
- 200K gallons roof top watering

Three Water Sources Harvested

- 6.3 million gallons of harvestable water supplies were identified
 - 4.3 million gallons steam condensate
 - .7 million cooling condensate
 - 1.3 million gallons from green roof and impervious roof

Water Harvesting's Impact

- Typical savings 2-5 million gallons of potable water each year & thousands of dollars
- Reduce the impact of a building on stormwater runoff
- "Guilt free" greenery around a building
- Stop flushing toilets with drinking water
- Integrate water conservation into a broader sustainability effort

Common Questions

- System costs?
- What is not included in a system?
- Are there regulatory issues? (Local codes?)
- Timeline from design to install?
 - What are milestones relative to an overall building project?
- System payout? (Return on investment)
- Ongoing maintenance requirements & costs?

Water Harvesting

For Commercial & Institutional Buildings

