This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

WaterSmart 2009

Analysis of Selecting a Sustainable Irrigation System

Presented by: Michael Igo, PE, LEED AP, CID Irrigation Consulting, Inc. 4 Hotel Place, Pepperell, MA 01463 (978) 433-8972 ex. 13 migo@irrigationconsulting.com

Introduction

Numerical Analysis is my Passion

- as an Engineer
- for Modeling and Design
- for Decision-Making

Sustainability is my Profession

- as a Consultant
- for Water Acquisition
- as an Educator

Introduction

There are Many Concepts as to What is "Sustainability"?

- Is it purely "Green"?
- Is it worth pursuing?
- Can it be measured?
- Can comparisons be made?

Introduction

Sustainable Irrigation Analysis is:

- Defining Sustainability
- Fitting Irrigation to Definition
- Applying a Numerical Model
- Comparing Results

Disclaimer

Please be Open-Minded!

- This Presentation is an Initial Formulation of Ideas
- Sustainability is a Grand Concept: Irrigation is "Simplified Enough"

Disclaimer

Please be Open-Minded!

- Attempt to Quantify "Non-Numerical" Qualities for Analysis in Water Resource Decisions
- Theory of Heat:
 Quantity (Energy)
 Quality (Hot or Cold)
 Quantify Hot or Cold by Temperature

World Commission on Environment and Development 1987 Brundtland Commission

Definition of Sustainable Development: "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

2007 United Nations Adopts the "Triple Bottom Line" (TBL)

Three Dimensions of Sustainability

- Economy
- Society
- Environment

Alternative Models

Overlapping Circle TBL Model Definition for this Discussion Dimensions are Not "Mutually Exclusive"

In years past, economic decision involved non-monetary outcomes as "Externalities" not included in the cost

TBL strives for "full-cost accounting" to encompass non-monetary effects from development

Sustainable Irrigation

If Irrigation is to meet this Definition of Sustainability, it must address the Three Dimensions:

- Economy
- Society
- Environment

Role of Irrigation

Consider That:

 Irrigation Supplements Rainfall— It does not *Replace* it. (Temperate)

Role of Irrigation

Consider That: Irrigation Design Changes to Suit Landscape—Not Vice Versa

Role of Irrigation

Onsider That: Irrigation Systems are only as Smart as their Managers

Economy

An Irrigation System must be Economically Viable NOW and in the FUTURE

Cannot Simply Select Cheapest System—We Must Consider

- Future Potable Water Costs
- Future Electricity Costs
- Future Maintenance Costs
- RISK of LOSS

Economy

Sum of Arrows is "Present Value"

Society

In order for Landscapes to fulfill their design intentions, they must be healthy now and in the future

While irrigation does not impact Society directly in the traditional sense, it does so through Landscape Efficacy

Society

Architects and Designers decide and argue how their Landscapes are used by Society (Parks, Offices, Campuses, Retail Stores)

Irrigation affects Society by the Level of Landscape Plant Health

- Attractiveness
- Usefulness
- Hazard Prevention (Fires)

Society

Plant-Dependent "Vulnerability Curve"

Environment

"Green" Projects are conscious of many <u>Site-</u> <u>Specific</u> Environmental Issues:

- Stormwater
- Erosion
- Open Space
- Heat-Island Effect

INTENT: Think Globally—Act Locally

Environment

Irrigation Directly Influences <u>Regional</u> Environment by Drawing from Area Water Supplies and Levels Critical to Humans and Wildlife

Excessive Potable Use = Bad for Environment

We Can Create a Computer Model using Long-Term Climate Records to Simulate Irrigation Performance to Obtain:

- Economy = Present Value
- Society = Plant Health (Soil Water)
- Environment = Potable Consumed

25-Year Climate Data		Site Adjustments		Soil Moisture Accounting					
Р	PET	Eff. P	ETo	Initial	+ Rain	- Plants	= Sub-	+ Irrig.	= Final
(in)	(in)	(in)	(in)	Moisture	(in)	(in)	total	(in)	Moisture
0.100	0.020	0.067	0.016	0.846	0.067	0.016	0.846	0.000	0.846
0.000	0.040	0.000	0.032	0.846	0.000	0.032	0.814	0.000	0.814
0.000	0.030	0.000	0.024	0.814	0.000	0.024	0.790	0.056	0.846
0.000	0.050	0.000	0.040	0.846	0.000	0.040	0.806	0.000	0.806
0.000	0.050	0.000	0.040	0.806	0.000	0.040	0.766	0.080	0.846
0.150	0.040	0.101	0.032	0.846	0.101	0.032	0.846	0.000	0.846

Total = Consumption (Economy & Environment)

Average = Plant Health (Society)

We Have Numbers for Each Dimension

Dimension Comparisons

• How does X dollars compare to Z gallons of water consumed?

Comparison Between Designs 1 and 2

 How does X₁ compare to X₂ from Sustainability Definition?

Relative Dimension Values

Example:

Landscape Value: -\$100,000 (Worst) Ideal Present Value: \$0 (Best)

Calculated Present Value = -\$20,000 X Value = 0.80

Propose a Sustainability Index, S

S = X + Y + Z

Maximum S = 3 (Certainly Sustainable) Minimum S = 0 (Certainly Not Sustainable)

Economy

Landscape Cost = -\$300,000 20-Year PV = -\$100,000 X = 0.67

Society

Average Plant Health = 95% Y = 0.95

Environment

 $\begin{array}{l} \text{Base Consumption} = 1.0 \ \text{MGY} \\ \text{Design Consumption} = 0.2 \ \text{MGY} \\ Z = 0.80 \end{array}$

Sustainability Index S = X + Y + Z S = 0.67 + 0.95 + 0.80S = 2.42

I Propose this Design is <u>"More Sustainable"</u> than Ones with S < 2.42

This is True <u>By Definition</u> because All Dimensions Must Be <u>Considered Equally</u> (Additive)

In Comparing Design Alternatives, Might Have to Give Back with a Dimension to Gain in Another

Case 1: $S_1 = X_1 + Y_1 + Z_1$ $S_1 = 0.67 + 0.95 + 0.80$ $S_1 = 2.42$ Case 2: $S_2 = X_2 + Y_2 + Z_2$ $S_2 = 0.60 + 1.00 + 0.95$ $S_2 = 2.55$ ANALYSIS OF SELECTING A SUSTAINABLE IRRIGATION SYSTEM

What About 0 Values? These Designs Should Not Be Selected by Definition

Base Irrigation Design Case: Water Consumption is Max: Z = 0

No Dimension is Mutually Exclusive

To Now, I Have Presented Average Sustainability Index

What About Potential Risks? System Failure Plant Material Disease, etc.

When Using Harvested Rainwater Resources We Must Consider DROUGHT RISK

Instead of Average Sustainability, We Could Consider: Expected Sustainability Index

Expected Values May Account for Foreseen Potential Risks

Average Values (No Risk): $S_1 = X_1 + Y_1 + Z_1$ $S_1 = 0.67 + 0.95 + 0.80$ $S_1 = 2.42$

Expected Values (With Risk): $S_{EXP} = X_{EXP} + Y_{EXP} + Z_{EXP}$ $S_{EXP} = 0.30 + 0.50 + 0.75$ $S_{EXP} = 1.55$

Summary

Accepted Definitions of Sustainability Include Equal Consideration of Economy, Society, and Environment for the Present and Future

Attempts Can Be Made to Quantify Sustainability for Comparisons When the Examples are Simple. Irrigation can provide this Example (Simple Enough).

Summary

Other Design Elements of Development Could Apply This Method if the Processes and Risks are Understood

More Research and Statistical Analysis is Required for More Complex Processes (Statistics of Dependent Variables)

Questions

